Электрические машины и трансформаторы

Конспекты
Начертательная
Решение задач
Графика

Режимы работы машин двигателем, тормозом и генератором

Асинхронная машина при изменении скольжения от 1 до 0 работает как двигатель. В этом случае электромагнитная мощность Pэм передается магнитным полем со статора ротору и частично преобразуется в механическую мощность  частично – в электрическую мощность Рэ2 = sРэм. При работе машины двигателем сдвиг между э.д.с., наведенной в фазе обмотки статора, и током в этой фазе  больше 90°, так же как для первичной обмотки трансформатора.

Исходя из полученных ранее соотношений между мощностями асинхронной машины, можно показать, что при изменении скольжения от s = l до s = ∞машина работает как тормоз. Скольжение s>l получается при вращении ротора против поля. При этом электрические потери в цепи ротора Рэ2 = sРэм будут больше мощности Pэм и, следовательно, только частично покрываются за счет Рэм, передаваемой полем со статора ротору. Другая часть электрических потерь в цепи ротора (s-1)Рэм покрывается за счет механической мощности, приложенной к ротору. Механическая мощность ротора будет отрицательной. Это значит, что она не отдается ротором, а подводится к нему и преобразуется в электрические потери в цепи ротора, т. е. поглощается в самой машине. Поэтому режим работы при s>l называется тормозным режимом.

Электромагнитный момент при этом действует на ротор в направлении вращения поля, т. е. против вращения ротора; следовательно, он является тормозящим по отношению к внешнему моменту, приложенному к валу машины.

Можно также показать, что при отрицательных скольжениях асинхронная машина работает генератором. При < 0 ротор вращается в направлении вращения поля, но с частотой, превышающей частоту поля (n2 > n1). В этом случае

электромагнитная мощность Рэм будет отрицательной, что следует из равенства

.          (3-75)

Мощность Рэм при отрицательном скольжении передается полем с ротора статору. Механическая мощность Р'2 при этом будет также отрицательной, что следует из равенства

.          (3-76)

Механическая мощность, следовательно, приложена к ротору. Часть ее идет на покрытие электрических потерь Рэ2 в цепи ротора, другая часть преобразуется в электромагнитную мощность Рэм, передаваемую полем статору. При работе машины генератором сдвиг между  и  меньше 90° (§ 3-12), так же как для вторичной обмотки трансформатора.

На рис. 3-30 приведена шкала скольжений для режимов генератора, двигателя и тормоза. Указанные режимы работы асинхронной машины и их использование для практических целей более подробно будут рассмотрены в последующем.

Рис. 3-30. Шкала скольжений для режимов генератора, двигателя и тормоза.

3-7. Аналогия с трансформатором

Между обмотками статора и ротора асинхронной машины, как отмечалось, существует только магнитная связь; здесь энергия из одной обмотки в другую передается через посредством магнитного поля.

В последующем будет показано, что при любом скольжении машины н.с. обмоток статора и ротора вращаются относительно статора с одной и той же частотой и, следовательно, неподвижны одна относительно другой. Поле в машине создается их совместным действием.

Примем, так же как для трансформатора, что в асинхронной машине при ее работе имеют место основное поле и поле рассеяния. Индукционные линии основного поля проходят через воздушные зазоры, зубцы и ярма статора и ротора и сцепляются с обеими обмотками – статорной и роторной. Этому полю соответствует главный поток Ф в воздушном зазоре.

Индукционные линии полей рассеяния проходят между стенками пазов, вокруг лобовых частей обмоток и между коронками зубцов (§ 3-16). Так как магнитные сопротивления для потоков индукционных трубок рассеяния определяются в основном воздушными промежутками, то в первом приближении их можно принять постоянными и в соответствии с этим считать постоянными индуктивности рассеяния обмоток статора и ротора Lσ1 и Lσ2 (как для первичной и вторичной обмоток трансформатора).

Главный поток Ф наводит в обмотке статора э.д.с.

          (3-77)

и в обмотке ротора, вращающегося относительно поля со скольжением s, э.д.с.

.          (3-78)

Так как согласно (3-74) f2 = sf1, то можно написать:

,          (3-79)

где

          (3-80)

есть э.д.с., наведенная в обмотке ротора при s = l, т. е. при неподвижном роторе.

Поля рассеяния наводят в обмотках статора и ротора э.д.с. рассеяния  и , которые можно считать пропорциональными соответствующим токам:

; .          (3-81)

Индуктивное сопротивление рассеяния статорной обмотки

.          (3-82)

Индуктивное сопротивление рассеяния роторной обмотки

,          (3-83)

где x2 = 2πf1Lσ2 – сопротивление при неподвижном роторе (при s = l).

Наряду с индуктивными сопротивлениями рассеяния обмотки статора и ротора имеют активные сопротивления r1 и r2.

Таким образом, допустив, что в машине существуют основное поле (и соответствующий ему поток Ф) и отдельно поля рассеяния, мы можем для обмотки статора, так же как для первичной обмотки трансформатора, написать уравнение напряжений

.          (3-84)

Для обмотки ротора уравнение напряжений напишется в следующем виде:

.          (3-85)

В дальнейшем мы покажем, что при составлении соотношений, устанавливающих связь между напряжением, токами, мощностями, вращающим моментом и скольжением асинхронной машины, а также связи этих величин с ее параметрами, можно исходить из ее аналогии с трансформатором; при этом вращающаяся асинхронная машина заменяется

неподвижной, работающей как трансформатор с активным сопротивлением роторной цепи  и ее индуктивным сопротивлением рассеяния х2.

Многофазная обмотка.  Вначале найдем н.с. трехфазной обмотки. Она может быть найдена графически, путем сложения н.с. отдельных фаз с учетом пространственного сдвига осей фаз и сдвига во времени их токов.

Принцип действия асинхронного двигателя и его энергетическая диаграмма Для лучшего понимания принципа действия асинхронного двигателя вначале примем, что его вращающееся поле создается путем вращения двух полюсов (постоянных магнитов или электромагнитов)

Трансформаторы широко применяются в системах передачи и распределения электроэнергии. Известно, что передача электроэнергии на дальние расстояния осуществляется при высоком напряжении (до 500 кВ и более), благодаря чему значительно уменьшаются электрические потери в линии электропередачи.

Использование электрических машин в качестве генераторов и двигателей