Электрические двигатели и генераторы

Прямая доставка чая из Китая

Гуманитарные науки

Гуманитарные науки

Выполнение 
работ на заказ. Контрольные, курсовые и дипломные работы

Выполнение работ на заказ. Контрольные, курсовые и дипломные работы

Занимайтесь онлайн 
        с опытными репетиторами

Занимайтесь онлайн
с опытными репетиторами

Приглашаем к сотрудничеству преподователей

Приглашаем к сотрудничеству преподователей

Готовые шпаргалки, шпоры

Готовые шпаргалки, шпоры

Отчет по практике

Отчет по практике

Приглашаем авторов для работы

Авторам заработок

Решение задач по математике

Закажите реферат

Закажите реферат

Трансформаторы
Устройство трансформаторов
Векторная диаграмма трансформатора
Переходные процессы в трансформаторах
Трансформатор для дуговой электросварки
Импульсные трансформаторы
Расчет тока холостого хода
Трансформаторы специального назначения
Трёхфазной цепи
Электрические машины
Классификация электрических машин
Асинхронные машины
Режимы работы машин двигателем, тормозом и генератором
Векторная диаграмма асинхронного двигателя
Вращающий момент в асинхронной машине
Рабочие характеристики двигателей
Регулирование скорости вращения
Однофазные асинхронные двигатели
Двухфазные двигатели.
Асинхронный преобразователь частоты 
Генераторы переменного тока
Трехфазный синхронный генератор
Индукционная нагрузочная характеристика
Однофазный синхронный генератор

Реактивная машина 

Потери и коэффициент полезного действия

Машины постоянного тока

Электродвижущие силы коммутируемой секции

Система "генератор – двигатель"

Двухфазные двигатели. Пуск в ход однофазных двигателей 

Пусковые схемы однофазных двигателей представлены на рис. 3-93.

Рис. 3-93. Пусковые схемы однофазного асинхронного двигателя с активным (а), индуктивным (б) и емкостным (в) сопротивлениями во вспомогательной фазе.

При пуске, когда рубильник замкнут, мы имеем двухфазную машину с главной фазой (или обмоткой) а и вспомогательной фазой (или обмоткой) b. Будем считать, что в исследуемой машине обе обмотки пространственно сдвинуты на 90 эл. град и имеют равные числа витков, обмоточные коэффициенты, числа пазов, в которых они расположены, и, кроме того, их полные сопротивления также равны между собой. В воздушном зазоре такой машины создается круговое вращающееся поле, если к фазам а и b подведена симметричная двухфазная система напряжений и .

Такое же поле будет создаваться и в том случае, если эффективные числа витков фаз а и b (wak0a и wbk0b – произведения чисел витков на обмоточные коэффициенты) различны, но к ним подводятся напряжения  и , где . Если привести фазу b к фазе а, то надо принять, что к ней подведено напряжение  и ток в ней равен . Мы при этом будем считать, что сопротивления фаз а и b связаны соотношениями: r1b = k2r1а и x1b = k2x1а.

Если к обмоткам подведены несимметричные напряжения  и , то, как и в случае трехфазной машины, следует обратиться к методу симметричных составляющих. В применении к двухфазной системе основные уравнения этого метода имеют следующий вид: для напряжений (рис. 3-94

Рис. 3-94. Симметричные составляющие двухфазной системы напряжений (при k = 1).

; ;          (3-218)

для токов

; ,          (3-219)

где ;  и ;  – напряжения и токи прямой последовательности, а ;  и ; – напряжения и токи обратной последовательности.

Из (3-218) и (3-219) следует:

; ;

; .          (3-220)

Можем считать, так же как для трехфазной машины, что системы напряжений ;  и ;  действуют независимо одна от другой.

Примем, что ротор вращается в сторону вращения поля, соответствующего напряжениям ; , тогда по отношению к этим напряжениям двухфазная асинхронная машина будет работать двигателем со скольжением s, а по отношению к напряжениям ;  она будет работать тормозом со скольжением 2 - s.

Если обозначить через Zsl и Zs2 полные сопротивления машины соответственно при скольжениях s и 2 - s, то можно написать:

; .          (3-221)

Рассмотрим теперь уравнения для токов и напряжений однофазного двигателя, который получается из двухфазного путем отключения от сети фазы b:

          (3-222)

Приведенные уравнения показывают, что для данного двигателя может быть начерчена схема замещения, не отличающаяся от схемы замещения однофазного двигателя, полученного из трехфазного путем отключения от сети одной его фазы (см. рис. 3-90, где вместо  надо взять ). Следовательно, здесь также можно считать, что однофазный двигатель аналогичен агрегату, состоящему из двух механически соединенных одинаковых двухфазных машин с последовательно включенными статорными обмотками, создающими поля, вращающиеся в разные стороны (см. рис. 3-91, где надо заменить трехфазные обмотки двухфазными и вместо  взять ).

Очевидно, что исследование однофазного двигателя при его работе и в этом случае может производиться при помощи схемы замещения или круговой диаграммы соответствующего симметричного двухфазного двигателя.

Отметим, что если обмотка однофазного двигателя (главная его обмотка занимает не две трети окружности статора, как в рассмотренном ранее случае, в кривой ее н. с. будут иметь место высшие гармонические порядка, кратного трем. Они повышают потери в машине и могут вызвать вибрации и шум при ее работе. Однако в обычных случаях их амплитуды невелики, и мы будем считать, что поле токов машины распределено в воздушном зазоре вдоль окружности синусоидально.

Исследуем пуск двигателя. При этом обратимся к рассмотренной в предыдущем двухфазной машине. Ее фаза а непосредственно приключена к сети и используется как главная обмотка, а фаза b используется как вспомогательная обмотка; она может быть приключена к сети через активное, индуктивное или емкостное сопротивление (рис. 3-93).

Обозначим в общем случае через Z внешнее сопротивление, включенное в фазу b. В соответствии с обозначениями рис. 3-93 напишем:

; .          (3-223)

Отсюда следует:

; .          (3-224)

Учитывая (3-218) и (3-219), из (3-224) получим:

или, подставляя (3-221),

.

Так как при пуске (s = 1) Zs1 =Zs2 = Zк (сопротивлению короткого замыкания симметричной машины), то будем иметь:

          (3-225)

где

Из предыдущего определяем  и :

          (3-226)

Полученные уравнения позволяют выяснить, при каком значении Z для данного k будет создаваться максимальный начальный пусковой момент.

Введем в (3-226) обозначения:  и ; после этого получим:

          (3-227)

Далее обозначим , полагая g переменным, но z при этом будем считать постоянным: например, если в фазу b включается активное сопротивление, то z = 0 = const, если конденсатор, то z =  = const. При включении в фазу b реактивной катушки также будем считать, что для нее  = tg z = const.

При g = 0 внешнее сопротивление Z = 0, чему соответствует непосредственное подключение фазы b к сети. Согласно (3-227) в этом случае модули  и  равны между собой ( при k = 1) и, следовательно, моменты от прямого и обратного полей одинаковы и Мнач = 0.

При g = , Z =  фаза b разомкнута и машина превращается в однофазную, не создающую никакого момента в начале пуска. Для этого случая U1 =U2 = U/2.

Найдем теперь, при каком значении g момент Мнач будет максимальным. Для этого надо определить максимум функции , так как Мнач пропорционален . Преобразим уравнения (3-227), подставляя в них  и  и учитывая, что  и  ( и  – векторы, сопряженные с  и ):

          (3-228)

Отсюда получим

          (3-229)

Согласно условию  величина  будет максимальной при g = k2, т. е. при z = k2zк.

Таким образом, мы нашли, что для любой машины при ее пуске в ход с использованием вспомогательной фазы максимальный момент Mнач.м получается в том случае, если абсолютное значение активного, индуктивного или емкостного сопротивления, включаемого во вспомогательную фазу, для данного k равно k2zк.

Обозначим через Mg начальный вращающий момент, развиваемый машиной, если к ней подводится симметричная двухфазная система напряжений  или если тогда при g = k2 будем иметь:

          (3-230)

Mнач.м зависит от . Очевидно, при  момент Мнач = 0. В обычных случаях близкие к этому условия получились бы при включении во вспомогательную фазу реактивной катушки. Однако для очень малых двигателей при cosк > 0,6÷0,7 она может найти себе применение, если требуется небольшой Mнач.

При активном пусковом сопротивлении z =0. В этом случае при g = k2 получим:

 При k = 1 в идеальном случае, когда φк = 90°, мы получили бы Mнач м  = 0,5Mg; но в обычных случаях при k = 1 Мнач м  (0,3  0,4) Mg. Можно увеличить Мнач м за счет уменьшения . Однако при этом может получиться чрезмерный ток Ib во вспомогательной фазе (следовательно, и начальный пусковой ток из сети , что видно из выражения для Ib при g = k2, которое выводится из приведенных ранее уравнений):

.

Обычно пусковое сопротивление R  O,5zк. Пуск через активное сопротивление на практике применяется довольно часто. При этом во многих случаях двигатели имеют вспомогательную обмотку, выполненную из провода повышенного сопротивления (тонкий медный провод, стальной или латунный провод), что исключает необходимость включать в нее внешнее сопротивление R.

При конденсаторном пуске  (рис. 3-93,в). Если по (3-230) рассчитать максимальный начальный момент для обычных значений φк, то можно видеть, что его значение получается очень большим: например, для cos φк = 0,3 (φк = 72,5°) при k = 1 он будет равен:

.

Однако такой большой момент получается при чрезмерном напряжении Uь на вспомогательной фазе. Действительно, согласно (3-218) и (3-227) при k = 1 и, следовательно, g = 1 имеем:

или абсолютное значение (с учетом равенства )

,

что для приведенного примера дает:

.

Напряжение Ub имеет недопустимое значение. Оно создало бы слишком сильное насыщение стальных участков магнитной цепи машины и очень большой ток в обмотке b, который привел бы к ее повреждению. Это следует иметь в виду при выборе емкости пускового конденсатора.

Обычно при конденсаторном пуске стремятся получить Мнач = Мg. Для этого надо иметь симметричную двухфазную систему напряжений на зажимах обмоток а и b

Однофазные асинхронные двигатели. Конденсаторные двигатели Наличие конденсатора во вспомогательной обмотке не только улучшает пусковые характеристики однофазного двигателя, но может также значительно улучшить его рабочие характеристики (к.п.д. и cosφ) и повысить, его использование.

Однофазные двигатели с экранированными полюсами   Однофазные двигатели с экранированными полюсами получили в последние годы широкое распространение. Они обычно выполняются на малые мощности (0,5 – 30 Вт) и применяются в тех случаях, где не требуется большой начальный вращающий момент.

Асинхронные исполнительные двигатели Вращающий момент двигателя создается в результате взаимодействия вращающегося поля и вихревых токов, наведенных им в цилиндрической части ротора.

Использование электрических машин в качестве генераторов и двигателей