Электрические двигатели и генераторы

Трансформаторы
Устройство трансформаторов
Векторная диаграмма трансформатора
Переходные процессы в трансформаторах
Трансформатор для дуговой электросварки
Импульсные трансформаторы
Расчет тока холостого хода
Трансформаторы специального назначения
Трёхфазной цепи
Электрические машины
Классификация электрических машин
Асинхронные машины
Режимы работы машин двигателем, тормозом и генератором
Векторная диаграмма асинхронного двигателя
Вращающий момент в асинхронной машине
Рабочие характеристики двигателей
Регулирование скорости вращения
Однофазные асинхронные двигатели
Двухфазные двигатели.
Асинхронный преобразователь частоты 
Генераторы переменного тока
Трехфазный синхронный генератор
Индукционная нагрузочная характеристика
Однофазный синхронный генератор

Реактивная машина 

Потери и коэффициент полезного действия

Машины постоянного тока

Электродвижущие силы коммутируемой секции

Система "генератор – двигатель"

Трехфазный синхронный генератор. Симметричная нагрузка  

Рассмотрим здесь работу трехфазного синхронного генератора при симметричной нагрузке, когда векторы фазных токов равны по величине и сдвинуты по фазе на 120°. При этом будем иметь в виду одиночную работу генератора, когда он работает на свою собственную сеть независимо от других синхронных машин. 

Реакция якоря

Токи в обмотке якоря создают н.с., которая будет вращаться относительно якоря в ту же сторону и с такой же частотой, что и н.с. обмотки возбуждения. Действительно, частота вращения н.с. якоря , а частота тока якоря , где пп – частота вращения

полюсов; отсюда, подставляя в первое равенство значение f из второго равенства, найдем, что nя = пп; направление вращения н.с. якоря зависит от порядка чередования фаз его обмотки (например А – В – C), а этот порядок чередования определяется направлением вращения полюсов.

Таким образом, н.с. якоря и н.с. обмотки возбуждения неподвижны одна относительно другой. Поле машины при нагрузке будет создаваться совместным действием обеих н.с. Оно будет отличаться от поля при холостом ходе.

Воздействие н.с. якоря на поле машины называется реакцией якоря.

Вначале будем рассматривать реакцию якоря, имея в виду качественную сторону этого явления. Количественный учет реакции якоря, так же как и внутренних падений напряжения в обмотке якоря, производится при помощи векторных диаграмм, которые будут рассмотрены в дальнейшем.

Синхронный генератор может работать с отстающим или опережающим током по отношению к э.д.с. , наведенной потоком полюсов , или с током, совпадающим по фазе с э.д.с. .

Рассмотрим реакцию якоря при токе, совпадающем по фазе с э.д.с. На рис. 4-12,а1 изображены векторы тока , э.д.с.  и потока полюсов .

Рис. 4-12. Реакция якоря.
а – при ψ = 0; б – при ψ = ; в – при ψ = - .

Угол между  и , который будем обозначать через ψ, равен нулю. Здесь под э.д.с.  понимается та э.д.с., которая наводится в обмотке якоря потоком полюсов  (потоком воздушного зазора) при холостом ходе. На рис. 4-12,а2 показаны полюсы машины и ее статор с одной фазой, причем фаза здесь заменена одной катушкой. Приданном положении фазы относительно полюсов наведенная в ней э.д.с. будет максимальной, так как поток полюсов, пронизывающий катушку в рассматриваемый момент времени, проходит через нулевое значение. Ток в фазе при  = 0 будет также максимальным. Ранее из рассмотрения созданной трехфазной обмоткой вращающейся н.с. было установлено, что ее ось (ее амплитуда) совпадает с осью той фазы, ток которой имеет максимальное значение (см § 3-4,б). Следовательно, ось н.с. совпадает с осью катушки, показанной на рис. 4-12,а2.

На этом рисунке показаны индукционные линии поля, созданного обмоткой якоря. Их направление найдено по правилу буравчика в соответствии с направлением наведенного тока, которое определено по правилу правой руки. На рис. 4-12,а2 видно, что поле якоря по отношению к оси полюсов является поперечным. Намагничивающая сила якоря будет ослаблять поле на набегающей половине полюса и усиливать его на сбегающей половине полюса.

Рассмотрим реакцию якоря при токе , отстающем на 90° от э.д.с.  (рис. 4-12,б1).

Рис. 4-12. Реакция якоря.
а – при ψ = 0; б – при ψ = ; в – при ψ = - .

На рис. 4-12, б2 показано положение катушки (фазы) относительно полюсов для момента времени, когда ток катушки имеет максимальное значение. Ток катушки достигает максимального значения на четверть периода позднее, чем э.д.с., т. е. после того как полюсы сдвинутся вправо на половину полюсного деления относительно того положения, при котором э.д.с. имеет максимальное значение. В рассматриваемом случае, как видно из рис. 4-12, б2, ось катушки совпадает с осью полюсов; следовательно, здесь н.с. и поле якоря будут продольными (действующими по оси полюсов). Намагничивающая сила якоря будет ослаблять поле, т. е. действовать размагничивающим образом.

Рассмотрим реакцию якоря при токе , опережающем э.д.с.  на 90° (рис. 4-12,в1). Здесь ток будет иметь максимальное значение на четверть периода ранее, чем э.д.с., т е. в катушке он будет максимальным тогда, как полюсы расположатся относительно катушки так, как показано на рис. 4-12,в2. Направление тока будет, очевидно, такое же, как и направление э.д.с., спустя четверть периода. На рис. 4-12,в2 видно, что н.с. якоря в этом случае будет также продольной (действующей по оси полюсов). Но она будет усиливать поле машины, т. е. будет действовать намагничивающим образом.

В общем случае, когда угол сдвига тока относительно э.д.с. больше нуля, но меньше по абсолютному значению 90°, ток можно разложить на две составляющие Isin и Icos (рис. 4-13,a1 и б1) и рассматривать отдельно действие н.с., создаваемых каждой из этих составляющих (Fd и Fq на рис. 4-13,а2 и б2, где Fa – н.с. якоря; ее ось совпадает с осью фазы, имеющей максимальный ток Iм).

Рис. 4-13. Реакция якоря при 90°.
а1, а2 – при отстающем токе (>0), б1, б2 – при опережающем токе (<0) (Fd – продольная н.с. якоря; Fq –поперечная н.с. якоря).

Таким образом, приходим к следующим выводам: в генераторе при отстающем токе реакция якоря будет размагничивающей, а при опережающем токе – намагничивающей.

Рассмотрев реакцию якоря с качественной стороны, вначале выясним, какие поля будут иметь место в машине при ее нагрузке и что собой представляют внутренние падения напряжения в обмотке якоря. После этого перейдем к рассмотрению векторных диаграмм.

При холостом ходе поле в машине создается, как уже отмечалось, только обмоткой возбуждения. Большая часть индукционных линий этого поля проходит по главной магнитной цепи машины (воздушный зазор, зубцовый слой и ярмо статора, полюсы и ярмо ротора). Эту часть поля можно по аналогии с трансформатором назвать основным полем или полем взаимной, индукции. Ему соответствует поток в воздушном зазоре или поток полюсов Ф0. Поток полюсов и наведенную им э.д.с. мы изобразили временными векторами Ф0 и Е0 (рис. 4-12, а1, б1, в1).

Аналогию между трансформатором и синхронной машиной можно распространить и на работу машины с нагрузкой, так как в этом случае поле будет создаваться совместным действием н.с. обмоток возбуждения и якоря. Обе эти н.с. и создаваемое ими поле, неизменные во времени, но вращающиеся в пространстве, будут эквивалентны соответствующим н.с. и полю, переменным во времени, но неподвижным относительно обмотки якоря. Поэтому можно считать, что пространственный сдвиг между осями н.с., равный углу 90° + ψ (рис. 4-13), соответствует такому же сдвигу по фазе (во времени) этих н.с.

Синхронная машина, работающая с постоянным током возбуждения, аналогична трансформатору последовательного включения (трансформатору тока), работающему с постоянным первичным током.

Рассмотрим реакцию якоря при токе , отстающем на 90° от э.д.с.  (рис. 4-12,б1).

Рис. 4-12. Реакция якоря.
а – при ψ = 0; б – при ψ = ; в – при ψ = - .

На рис. 4-12, б2 показано положение катушки (фазы) относительно полюсов для момента времени, когда ток катушки имеет максимальное значение. Ток катушки достигает максимального значения на четверть периода позднее, чем э.д.с., т. е. после того как полюсы сдвинутся вправо на половину полюсного деления относительно того положения, при котором э.д.с. имеет максимальное значение. В рассматриваемом случае, как видно из рис. 4-12, б2, ось катушки совпадает с осью полюсов; следовательно, здесь н.с. и поле якоря будут продольными (действующими по оси полюсов). Намагничивающая сила якоря будет ослаблять поле, т. е. действовать размагничивающим образом.

Рассмотрим реакцию якоря при токе , опережающем э.д.с.  на 90° (рис. 4-12,в1). Здесь ток будет иметь максимальное значение на четверть периода ранее, чем э.д.с., т е. в катушке он будет максимальным тогда, как полюсы расположатся относительно катушки так, как показано на рис. 4-12,в2. Направление тока будет, очевидно, такое же, как и направление э.д.с., спустя четверть периода. На рис. 4-12,в2 видно, что н.с. якоря в этом случае будет также продольной (действующей по оси полюсов). Но она будет усиливать поле машины, т. е. будет действовать намагничивающим образом.

В общем случае, когда угол сдвига тока относительно э.д.с. больше нуля, но меньше по абсолютному значению 90°, ток можно разложить на две составляющие Isin и Icos (рис. 4-13,a1 и б1) и рассматривать отдельно действие н.с., создаваемых каждой из этих составляющих (Fd и Fq на рис. 4-13,а2 и б2, где Fa – н.с. якоря; ее ось совпадает с осью фазы, имеющей максимальный ток Iм).

Рис. 4-13. Реакция якоря при 90°.
а1, а2 – при отстающем токе (>0), б1, б2 – при опережающем токе (<0) (Fd – продольная н.с. якоря; Fq –поперечная н.с. якоря).

Таким образом, приходим к следующим выводам: в генераторе при отстающем токе реакция якоря будет размагничивающей, а при опережающем токе – намагничивающей.

Рассмотрев реакцию якоря с качественной стороны, вначале выясним, какие поля будут иметь место в машине при ее нагрузке и что собой представляют внутренние падения напряжения в обмотке якоря. После этого перейдем к рассмотрению векторных диаграмм.

При холостом ходе поле в машине создается, как уже отмечалось, только обмоткой возбуждения. Большая часть индукционных линий этого поля проходит по главной магнитной цепи машины (воздушный зазор, зубцовый слой и ярмо статора, полюсы и ярмо ротора). Эту часть поля можно по аналогии с трансформатором назвать основным полем или полем взаимной, индукции. Ему соответствует поток в воздушном зазоре или поток полюсов Ф0. Поток полюсов и наведенную им э.д.с. мы изобразили временными векторами Ф0 и Е0 (рис. 4-12, а1, б1, в1).

Аналогию между трансформатором и синхронной машиной можно распространить и на работу машины с нагрузкой, так как в этом случае поле будет создаваться совместным действием н.с. обмоток возбуждения и якоря. Обе эти н.с. и создаваемое ими поле, неизменные во времени, но вращающиеся в пространстве, будут эквивалентны соответствующим н.с. и полю, переменным во времени, но неподвижным относительно обмотки якоря. Поэтому можно считать, что пространственный сдвиг между осями н.с., равный углу 90° + ψ (рис. 4-13), соответствует такому же сдвигу по фазе (во времени) этих н.с.

Синхронная машина, работающая с постоянным током возбуждения, аналогична трансформатору последовательного включения (трансформатору тока), работающему с постоянным первичным током.

Активное и индуктивное сопротивления обмотки якоря   Индуктивное сопротивление рассеяния обмотки якоря. Понятие индуктивного сопротивления рассеяния как некоторого параметра обмотки якоря синхронной машины аналогично тому же самому понятию в применении к обмотке статора асинхронной машины.

Диаграммы явнополюсной машины Метод двух реакций основан на разложении н.с. якоря на две н.с. – продольную и поперечную.

Упрощенные диаграммы   Рассматриваемые здесь упрощенные диаграммы являются одними из первых диаграмм, которые начали применять при исследовании синхронных машин. В настоящее время они служат главным образом для качественного рассмотрения явлений в этих машинах. Количественный учет при их помощи получается обычно недостаточно точным. Только для машин неявнополюсных и ненасыщенных, следовательно, имеющих прямолинейную характеристику холостого хода, они могут дать точные результаты.

Использование электрических машин в качестве генераторов и двигателей