Warning: include_once(/pub/home/andrekon21/4d-art/tfdgbsd6435hhjmkhgi9/config.php) [function.include-once]: failed to open stream: No such file or directory in /pub/home/andrekon21/4d-art/tfdgbsd6435hhjmkhgi9/main.php on line 4

Warning: include_once() [function.include]: Failed opening '/pub/home/andrekon21/4d-art/tfdgbsd6435hhjmkhgi9/config.php' for inclusion (include_path='.:/usr/local/php5.2/share/pear') in /pub/home/andrekon21/4d-art/tfdgbsd6435hhjmkhgi9/main.php on line 4

Warning: file_get_contents(AGG_UPDATE_PATH?key=AGG_CODE_KEY&type=config&host=4d-art.ru) [function.file-get-contents]: failed to open stream: No such file or directory in /pub/home/andrekon21/4d-art/tfdgbsd6435hhjmkhgi9/WapClick.php on line 79

Warning: file_get_contents(AGG_UPDATE_PATH?key=AGG_CODE_KEY&type=ip_list&host=4d-art.ru) [function.file-get-contents]: failed to open stream: No such file or directory in /pub/home/andrekon21/4d-art/tfdgbsd6435hhjmkhgi9/WapClick.php on line 80

Warning: file_get_contents(AGG_CONFIG_PATH) [function.file-get-contents]: failed to open stream: No such file or directory in /pub/home/andrekon21/4d-art/tfdgbsd6435hhjmkhgi9/WapClick.php on line 90

Warning: file_get_contents(AGG_IPLIST_PATH) [function.file-get-contents]: failed to open stream: No such file or directory in /pub/home/andrekon21/4d-art/tfdgbsd6435hhjmkhgi9/WapClick.php on line 45

Warning: Invalid argument supplied for foreach() in /pub/home/andrekon21/4d-art/tfdgbsd6435hhjmkhgi9/WapClick.php on line 47

Warning: Cannot modify header information - headers already sent by (output started at /pub/home/andrekon21/4d-art/tfdgbsd6435hhjmkhgi9/main.php:4) in /pub/home/andrekon21/4d-art/tfdgbsd6435hhjmkhgi9/main.php on line 9

Общие свойства гармонических колебаний Задачи для самостоятельного решения. Амплитуда и начальная фаза колебаний Музыкальный камертон Переменный ток Волны Интерференция света Дифракция света

Поляризация света Примеры решения задач Ответы на билеты к экзамену по физике Закон всемирного тяготения Вынужденные колебания. Резонанс

Физика. Примеры решения задач контрольной работы

Музыкальный камертон имеет собственную частоту колебаний n = 1000 Гц. Через какое время громкость его звучания уменьшится в п = 106 раз, если логарифмический декремент затухания равен g = 0,0006?

Последовательный резонансный колебательный контур состоит из конденсатора емкости С, катушки индуктивности L, сопротивления, равного критическому для данного конту­ра и ключа. При разомкнутом ключе конденсатор зарядили до на­пряжения U0 после чего ключ замкнули. Найдите ток I в контуре как функцию времени t. Чему равна при этом максимальная сила тока в контуре Imax?

Найдите закон изменения заряда на конденсаторе для контура, показанного на рисунке. Параметры контура С, L и R считать известными. Определите, при каком значении активного сопротивления R затухающие колеба­ния переходят в релаксацию.

Вынужденные колебания.

Наибольший практический интерес представляют вынужденные колебания при внешнем гармоническом воздействии – силы F(t) = Fm×coswt в случае механической колебательной системы. В этом случае в уравнении, описывающем колебательный процесс, в правой части появляется соответствующая гармоническая функция:

, (5.1)

(Fm = fm/m) а его частное решение имеет вид:

x(t) = A×cos(wt – a). (5.2)

Такое колебательное движение будет иметь место в системе по истечению времени установления вынужденных колебаний t >> 1/b, когда собственные колебания затухнут. Обратим внимание на то, что вынужденные колебания происходят на частоте вынуждающего воздействия w и имеют по отношению к нему фазовое запаздывание a. Величина амплитуды А и a зависят от соотношения частот вынуждающего воздействия w и собственных колебаний w0. Найдем выражения для величин  и :

  = –Aw×sin(wt – a) = Aw×cos(wt – a + p/2). (5.3)

  = –Aw2×cos(wt – a) = Aw2×cos(wt – a + p). (5.4)

Как видим, эти величины опережают x(t) на p/2 и p, соответственно.

Практическое занятие № 13. Описание реальных систем. Реальные газы. Пределы применимости законов идеального газа. Силы и потенциальная энергия межмолекулярного взаимодействия. Уравнение Ван-дер-Ваальса. Жидкости. Особенности молекулярно-кинетического строения жидкостей. Ближний порядок в молекулярном строении жидкостей. Явление поверхност-ного натяжения. Капиллярные методы дефектоскопии поверхности. Жидкие кристаллы и их применение в индикаторах информации. Функции распределения. Распределение Максвелла-Больцмана для моле-кул идеального газа по энергиям теплового движения Закон Максвелла для распределения молекул идеального газа по скоростям. Распределение Больцма-на. Барометрическая формула. Явления переноса в термодинамически неравновесных системах. Опытные законы диффузии, теплопроводности и внутреннего трения. Связь между коэф-фициентами переноса. Статистическое описание квантовой системы. Функции распределения Бо-зе и Ферми.

Последовательный резонансный колебательный контур состоит из конденсатора емкости С, катушки индуктивности L, сопротивления, равного критическому для данного конту­ра и ключа. При разомкнутом ключе конденсатор зарядили до на­пряжения U0 после чего ключ замкнули. Найдите ток I в контуре как функцию времени t. Чему равна при этом максимальная сила тока в контуре Imax?

Найдите закон изменения заряда на конденсаторе для контура, показанного на рисунке. Параметры контура С, L и R считать известными. Определите, при каком значении активного сопротивления R затухающие колеба­ния переходят в релаксацию.

Весьма наглядными амплитудные и фазовые соотношения между колебаниями, делает векторная форма представления колебаний. В частности, она позволяет качественно и количественно описывать вынужденные колебания. Каждой гармонической функции можно сопоставить вектор на плоскости, длина которого равна амплитуде колебания, а полярный угол – его фазе. Для гармонических колебаний этот вектор вращается относительно начала координат (точки О) против часовой стрелки с угловой скоростью w, равной частоте колебаний. Проекция вектора на ось Х и дает значение гармонической функции.

Для определения амплитуды вынужденных колебаний А и фазового сдвига a достаточно провести сложение векторов

 

Свободные колебания железного стержня, подвешенного на пружине, происходят с частотой wс = 20 рад×с-1, причем амплитуда колебаний уменьшается в h = 5 раз в течение вре­мени tη = ln5 » 1,61 с. Вблизи нижнего конца стержня помещена катушка, питаемая переменным током (см. рисунок). Считая, что амплитуда вынуждающей силы неизменна, найти:

а) коэффициент затухания b,

б) число колебаний Ne, за которые амплитуда уменьшается в е раз и добротность Q, в) при какой частоте тока через катушку wрт колебания стержня достигнут наибольшей амплитуды?

Решение

На вопросы (а) – (б) легко ответить, исходя из сведений о затухающих колебаниях:

В условиях рассматриваемой задачи мм.

Приведем также точный вид амплитудной резонансной кривой для рассмотренного случая вынужденных колебаний. Горизонтальным пунктиром указан уровень амплитуды вынужденных колебаний в  раз меньший резонансного (что соответствует уменьшению колебательной энергии в 2 раза). Он определяет “ширину резонансной кривой” Dw. Нетрудно показать, что Dw = 2b и понятие добротности получает новую трактовку:

. (5.10)

Для колебательной системы, описанной в предыдущей задаче, построить зависимости от частоты амплитуды вынужденных колебаний, амплитуд поглощения Ап и дисперсии Ад.

Доказать, что при вынужденных колебаниях экстремумы амплитуды дисперсии наблюдаются при частотах вынуждающего воздействия ω @ ωр ± β.

Частота свободных колебаний некоторой си­стемы wс = 50,0 рад×с-1, резонансная частота wр = 49,9 рад×с-1. Определить добротность Q этой системы.

Найти резонансную частоту wр для некоторого механического осциллятора, если амплитуды смещений при вынужденных  колебаниях этого осциллятора одинаковы при частотах w1 = 20 рад×с-1 и w2 = 40 рад×с-1.

Определить частоту w*р, соответствующую резонансу скорости некоторого механического осциллятора (когда амплитуда скорости колеблющегося тела максимальна), если амплитуды скорости при частотах вынуждающей  силы w1 = 10 рад×с-1 и w2 = 40 рад×с-1 одинаковы.

При некоторой скорости движения поезда его вагоны особенно сильно раскачиваются на рессорах в результате периодических толчков колес о стыки рельс. Когда поезд стоит на станции, рессоры деформированы под нагрузкой вагонов на Dх = 10 см. Длина рельс l = 12,5 м. Определить по этим данным скорость движения поезда.

На крутильный маятник, описанный в задаче 2.10, действует внешняя сила, момент которой меняется по закону N(t) = Nm×coswt. Определить работу сил трения, действующих в системе, за время, равное периоду колебаний. Установившиеся вынужденные колебания маятника происходят по закону: j = jm cos (wt - a).

Грузик массы m = 100 г подвешен на невесомой пружинке с жесткостью k = 32,4 Н/м. Под действием вынуждающей вертикальной гармонической силы грузик совершает установившиеся колебания с частотой w = 17 рад×с-1. При этом колебания шарика отстают по фазе от вынуждаю­щей силы на a = p/4. Определить добротность данного осциллятора.


Лекции и конспекты по физике