Прямая доставка чая из Китая

Гуманитарные науки

Гуманитарные науки

Студенческий файлообменник

Студенческий файлообменник

Выполнение 
работ на заказ. Контрольные, курсовые и дипломные работы

Выполнение работ на заказ. Контрольные, курсовые и дипломные работы

Занимайтесь онлайн 
        с опытными репетиторами

Занимайтесь онлайн
с опытными репетиторами

Приглашаем к сотрудничеству преподователей

Приглашаем к сотрудничеству преподователей

Готовые шпаргалки, шпоры

Готовые шпаргалки, шпоры

Отчет по практике

Отчет по практике

Приглашаем авторов для работы

Авторам заработок

Решение задач по математике

Закажите реферат

Закажите реферат

Векторная алгебра и аналитическая геометрия Математический анализ Предел последовательности Геометрическая прогрессия Вычисление объемов с помощью тройных интегралов Двойные интегралы в полярных координатах

Математика Примеры решения задач контрольной работы

Вычисление объемов с помощью тройных интегралов

Объем тела U в декартовых координатах Oxyz выражается формулой

В цилиндрических координатах объем тела равен
В сферических координатах, соответственно, используется формула

Пример 1 Найти объем конуса высотой H и радиусом основания R (рисунок 2).


Решение.
Рис.1
Конус ограничен поверхностью и плоскостью z = H (рисунок 1). В декартовых координатах его объем выражается формулой
     
Вычислим этот интеграл в цилиндрических координатах, которые изменяются в пределах
     
Получаем (не забудем включить в интеграл якобиан ρ):
     
Находим объем конуса:

     

Пример 2 Найти объем шара x2 + y2 + z2 ≤ R2.


Решение.
Вычислим объем части шара, расположенной в первом октанте (x ≥ 0, y ≥ 0, z ≥ 0), и затем умножим результат на 8. Получаем
     
В результате получена известная формула для объема шара радиусом R.

Пример 3 Найти объем тетраэдра, ограниченного плоскостями, проходящими через точки A (1;0;0), B (0;2;0), C (0;0;3), и координатными плоскостями Oxy, Oxz, Oyz (рисунок 2).

Рис.2
Рис.3

Решение.
Уравнение прямой AB в плоскости Oxy (рисунок 3) имеет вид: y = 2 − 2x. При этом переменная x изменяется в интервале 0 ≤ x ≤ 1, а переменная y − в интервале 0 ≤ y ≤ 2 − 2x.

Составим теперь уравнение плоскости ABC в отрезках. Поскольку плоскость ABC отсекает отрезки 1, 2, 3, соответственно, на осях Ox, Oy и Oz, то ее уравнение имеет вид:
     
В общем виде уравнение плоскости ABC записывается как
     
Следовательно, пределы интегрирования по переменной z изменяются в промежутке от z = 0 до . Теперь можно вычислить объем заданного тетраэдра:

     

При выводе предыдущего утверждения мы существенно использовали тот факт, что  - комплексная переменная (в частности, когда ссылались на основную теорему алгебры). В то же время в самом полученном представлении многочлена все участвующие величины (кроме ) - действительные числа. Предположим теперь, чтобы переменная  принимает только действительные значения, т.е. . Тогда утверждение 5 можно переформулировать так: любой многочлен с действительными коэффициентами  от действительной переменной  может быть представлен, и притом единственным с точностью до порядка сомножителей образом, в виде

, где смысл всех параметров описан выше.

9.3. Рациональные функции и их разложение в сумму простых дробей.

 9.3.1. Определение рациональных функций и простых дробей. Рациональной функцией называется отношение двух многочленов

.

Здесь и дальше мы снова будем работать только с действительной переменной , коэффициенты обоих многочленов - действительные числа, , . Рациональная функция (дробь) называется правильной, если ; если , рациональная дробь называется неправильной. Любая неправильная дробь может быть представлена в виде сумма многочлена степени  и правильной дроби: , ; нахождение целой части  и остатка  может быть выполнено, например, с помощью процедуры деления "уголком". В дальнейшем будем предполагать, что  - правильная дробь.

 Простыми дробями называются рациональные функции следующих четырёх типов:

I. ;

II. ;

III. ;

IV. .

  9.3.2. Теорема о разложении правильной рациональной функции в сумму простых дробей. Пусть знаменатель правильной рациональной дроби представлен, согласно утверждению 6 пункта 9.2.3, в виде , . Тогда дробь  единственным (с точностью до порядка слагаемых) образом может быть представлена как суммы простых дробей следующей структуры

.

О правилах Лопиталя Ранее при изучении пределов мы рассматривали неопределённости различных видов и учились раскрывать их, используя для этого специальные приёмы. Дифференциальное исчисление позволяет построить более универсальные методы вычисления неопределённых пределов. Некоторые из них, носящие общее название правил Лопиталя, мы изложим в этом пункте.

Первообразная и неопределённый интеграл В этом подразделе рассматривается задача отыскания функции, для которой заданная функция является производной. Пример. Вычислить интеграл . .

Пример Найти объем тетраэдра, ограниченного плоскостями x + y + z = 5, x = 0, y = 0, z = 0

Пример Найти объем тела, ограниченного сферой x2 + y2 + z2 = 6 и параболоидом x2 + y2 = z.

Пример Вычислить двойной интеграл , в котором область интегрирования R ограничена прямыми линиями .

Метод замены переменной Вычислить интеграл . Решение. Применяем подстановку . Тогда или .

Замена переменных в тройных интегралах При вычислении тройного интеграла, как и двойного, часто удобно сделать замену переменных. Это позволяет упростить вид области интегрирования или подынтегральное выражение. Найти объем области U, заданной неравенствами

Найти площадь треугольника с вершинами в точках (0,0), (2,6) и (7,1).


Тройные интегралы в декартовых координатах