Прямая доставка чая из Китая

Гуманитарные науки

Гуманитарные науки

Студенческий файлообменник

Студенческий файлообменник

Выполнение 
работ на заказ. Контрольные, курсовые и дипломные работы

Выполнение работ на заказ. Контрольные, курсовые и дипломные работы

Занимайтесь онлайн 
        с опытными репетиторами

Занимайтесь онлайн
с опытными репетиторами

Приглашаем к сотрудничеству преподователей

Приглашаем к сотрудничеству преподователей

Готовые шпаргалки, шпоры

Готовые шпаргалки, шпоры

Отчет по практике

Отчет по практике

Приглашаем авторов для работы

Авторам заработок

Решение задач по математике

Закажите реферат

Закажите реферат

Геометрические приложения интегралов Криволинейные интегралы Физические приложения тройных интегралов Тройные интегралы в декартовых координатах Найти разложение в ряд Фурье функции

Математика Примеры решения задач контрольной работы

Геометрические приложения поверхностных интегралов

С помощью поверхностных интегралов вычисляются

Площадь поверхности
Пусть S является гладкой, кусочно-непрерывной поверхностью. Площадь поверхности определяется интегралом
Если поверхность S задана параметрически с помощью вектора
то площадь поверхности будет равна
где D(u,v) − это область, в которой задана поверхность.

Если поверхность S задана в явном виде функцией z(x,y), то площадь поверхности выражается формулой
где D(x,y) − проекция поверхности S на плоскость xy.

Объем тела, ограниченного замкнутой поверхностью
Предположим, что тело ограничено некоторой гладкой, замкнутой поверхностью S. Тогда объем тела определяется по формуле

Пример 1 Вычислить площадь поверхности части параболоида , лежащей выше плоскости xy.


Решение.
Площади заданной поверхности равна
     
Переходя к полярным координатам, находим ответ:

     

Пример 2 Найти площадь полусферы радиуса R.


Решение.
В сферических координатах поверхность верхней полусферы описывается в виде
     
где (рисунок 1).
Вычислим дифференциальный элемент площади.
     
Найдем векторное произведение данных векторов:
     
Следовательно, элемент площади будет равен
     
Отсюда вычисляем площадь полусферы:
     
Рис.1
Рис.2

 

 

Пример 3 Вычислить площадь поверхности тора, заданного уравнением в цилиндрических координатах.


Решение.
Параметрические уравнения тора имеют вид (рисунок 2):
     
Убедимся, что эти уравнения правильно описывают окружность в сечении тора. Действительно, поскольку , то после подстановки получаем
     
Таким образом, поверхность тора описывается следующим вектором:
     
Для вычисления площади поверхности воспользуемся формулой
     
Входящее в эту формулу векторное произведение имеет вид
     
Тогда модуль векторного произведения равен
     
Отсюда находим площадь поверхности тора:

     

Некоторые множества на числовой оси.

 Определения.

 3.2.1. Для любой пары элементов aÎR, bÎR такой, что a<b, множество действительных чисел х, удовлетворяющей условию а<х<b, называется открытым промежутком, или интервалом с началом а и концом b и обозначается (a,b) (или ] a ,b[).

 3.2.2. Множество действительных чисел х, удовлетворяющей условию а£х£b, называется замкнутым промежутком, или отрезком и обозначается [a,b]

 3.2.3. Определения полуоткрытых промежутков: (a,b]={x| а<х£b}; [a,b)={x| а£х<b}.

 3.2.4. Пусть eÎR, e>0. e-окрестностью числа (точки) х0 называется множество.

.

 3.2.5. Проколотой e-окрестностью числа (точки) х0 называется множество .

 Пусть Х – произвольное множество действительных чисел.

3.2.6. Точка х0 называется предельной точкой множества Х, если в любой e-окрестности точки х0 имеются элементы множества Х, отличные от х0.

Предельная точка множества может принадлежать этому множеству, а может не принадлежать ему. Так, точка х0 = 1 является предельной и для отрезка [0, 1], и для интервала (0, 1).

3.3. Несобственные точки числовой прямой.

 Дополним множество вещественных чисел тремя новыми объектами (-¥, +¥, ¥), которые определим через систему их окрестностей.

 Определения.

 3.3.1. Несобственной точкой -¥ будем называть объект, К-окрестность которого - множество .

 Для "уÎR выполняется -¥<у.

3.3.2. Несобственной точкой +¥ будем называть объект, К-окрестность которого - множество .

 Для "уÎR выполняется у<+¥.

3.3.3. Пусть К>0. Несобственной точкой ¥ будем называть объект, К-окрестность которого - множество .

3.4. Границы числовых множеств.

Пусть Х={x|xÎR} - некоторое подмножество множества действительных чисел.

Объем тела, ограниченного замкнутой поверхностью.

Пример 4 Вычислить объем эллипсоида .

Интегрирование по частям Пример Вычислить интеграл . Решение. Используем формулу интегрирования по частям . Пусть .

Пример 5 С помощью формулы Грина вычислить интеграл , где контур C представляет собой треугольник ABD с вершинами A (a,0), B (a,a), D (0,a).

Несобственные интегралы Пример Определить, при каких значениях k интеграл сходится.

Определить, сходится или расходится несобственный интеграл ?

Вычислить периметр единичной окружности. Решение. Вычислим длину дуги окружности в первом квадранте между x = 0 и x = 1 и затем умножим результат на 4.

Пример Найти интеграл . Решение. Сделаем подстановку:      

Пример 6 Вычислить интеграл без использования замены переменной.


Вычисление объемов с помощью тройных интегралов