Прямая доставка чая из Китая

Гуманитарные науки

Гуманитарные науки

Студенческий файлообменник

Студенческий файлообменник

Выполнение 
работ на заказ. Контрольные, курсовые и дипломные работы

Выполнение работ на заказ. Контрольные, курсовые и дипломные работы

Занимайтесь онлайн 
        с опытными репетиторами

Занимайтесь онлайн
с опытными репетиторами

Приглашаем к сотрудничеству преподователей

Приглашаем к сотрудничеству преподователей

Готовые шпаргалки, шпоры

Готовые шпаргалки, шпоры

Отчет по практике

Отчет по практике

Приглашаем авторов для работы

Авторам заработок

Решение задач по математике

Закажите реферат

Закажите реферат

Геометрические приложения интегралов Криволинейные интегралы Физические приложения тройных интегралов Тройные интегралы в декартовых координатах Найти разложение в ряд Фурье функции

Математика Примеры решения задач контрольной работы

Тройные интегралы в декартовых координатах

Вычисление тройного интеграла в декартовых координатах сводится к последовательному вычислению трех определенных интегралов.

Рассмотрим случай, когда область интегрирования U является элементарной относительно оси Oz, т.е. любая прямая, параллельная оси Oz, пересекает границу области U не более, чем в двух точках. Пусть область U ограничена снизу поверхностью z = z1(x,y), а сверху - поверхностью z = z2(x,y) (рисунок 1). Проекцией тела U на плоскость Oxy является область D (рисунок 2). Будем предполагать, что функции z1(x,y) и z2(x,y) непрерывны в области D.

Рис.1
Рис.2
Тогда для любой непрерывной в области U функции f (x,y,z) можно записать соотношение
Таким образом, вычисление тройного интеграла сводится к вычислению двойного интеграла, в котором подынтегральной функцией является однократный интеграл. В рассмотренном случае сначала вычисляется внутренний интеграл по переменной z, а затем - двойной интеграл в области D по переменным x и y.

Если область
D(x,y) является областью типа I (смотрите Повторные интегралы), т.е. ограничена линиями
где
f1(x), f2(x) - непрерывные функции в интервале [a,b] и f1(x) ≤ f2(x), то, записывая двойной интеграл в виде повторного, получаем
В другом случае, когда область
D(x,y) относится к типу II (является элементарной относительно оси Ox) и ограничена линиями
где
φ1(y), φ2(y) - непрерывные на отрезке [c,d] функции, причем φ1(y) ≤ φ2(y), тройной интеграл представляется в виде
Формулы (1) и (2) называются формулами сведения тройного интеграла к повторному.

В частном случае, когда область интегрирования U представляет собой прямоугольный параллелепипед , тройной интеграл вычисляется по формуле
Если исходная область интегрирования U более сложная, чем рассмотренная выше, то ее нужно разбить на конечное число более простых областей, в которых уже можно вычислить тройные интегралы методом сведения к повторным.

   Пример 1 Вычислить интеграл

     

Решение.
Найдем последовательно все три интеграла:
     

Пример 2 Вычислить интеграл

     
где область U расположена в первом октанте ниже плоскости
3x + 2y + z = 6.

Решение.
Записывая уравнение плоскости
3x + 2y + z = 6 в отрезках:
     
изобразим область интегрирования U (рисунок 3).
Рис.3
Рис.4
Пределы интегрирования по z изменяются от
z = 0 до z = 6 − 3x − 2y. Рассматривая проекцию D в плоскости Oxy, находим, что переменная y изменяется от y = 0 до (рисунок 4). При этом переменная x "пробегает" от 0 до 2.

Итак, тройной интеграл выражается через повторный в виде
     
Вычисляем последовательно все три интеграла и находим ответ:

     

Пример 3 Вычислить тройной интеграл

     
где область U (рисунок 5) ограничена поверхностями
     
Рис.5
Рис.6

Решение.
Проекция области U на плоскость Оxy имеет вид, показанный на рисунке 6. Учитывая это, найдем соответствующие повторные интегралы:
     

Пример 4 Выразить тройной интеграл через повторные интегралы шестью различными способами. Область U расположена в первом октанте и ограничена цилиндром x2 + z2 = 4 и плоскостью y = 3 (рисунок 7). Найти значение интеграла.

Рис.7
Рис.8

Решение.
Если порядок интегрирования имеет вид "z-y-x", то повторный интеграл выглядит как
     
Аналогично записывается повторный интеграл для последовательности интегрирования
"z-x-y":
     
Теперь рассмотрим случай
"x-y-z", т.е. когда первый внутренний интеграл берется по переменной x.
Тогда
     
Поскольку проекция тела на плоскость Oyz представляет собой прямоугольник (рисунок 8), то меняя порядок интегрирования по y и z, получаем
     
Наконец повторный интеграл при интегрировании в порядке
"y-x-z" (начиная с внутреннего интеграла) имеет вид:
     
Последний шестой вариант записывается в виде:
     
Мы можем использовать любой из шести повторных интегралов чтобы вычислить значение тройного интеграла. Например, используя последний интеграл, получаем:
     
Сделаем замену:
     
Находим окончательный ответ:
     
Нетрудно проверить, что данное значение в точности равно 1/4 объема цилиндра, по которому проводилось интегрирование.

Таблица эквивалентных бесконечно малых.

 Здесь мы с помощью рассмотренных в 4.4.7 пределов составим таблицу эквивалентных БМ функций и выпишем следующие из них выражения для главных частей (они подчёркнуты).

Эквивалентность при х®0

Главная часть при х®0

1. sin x ~ x

1. sin x = x+o(x)

2. 1 - cos x ~ x2/2

2. 1 - cos x = x2/2+o(x2)Þcos x = 1- x2/2+o(x2)

3. tg x ~ x

3. tg x = x+o(x)

4. arcsin x ~ x

4. arcsin x = x+o(x)

5. arctg x ~ x

5. arctg x = x+o(x)

6. ax-1 ~ x ln a; ex-1 ~ x

6. ax–1 = x ln a+o(x)Þ ax = 1+ x ln a+o(x)

 ex –1 = x+o(x) )Þ ex = 1+ x +o(x)

7. loga (1+x) ~ x logae; ln(1+x) ~ x

7. loga (1+x) = x logae+o(x); ln(1+x) = x+o(x)

8. (1+x)a-1 ~ a x

8. (1+x)a - 1 = a x+o(x)Þ (1+x)a=1 + a x+o(x)

9. sh x ~ x

9. sh x = x+o(x)

10. ch x - 1 ~ x2/2

10. ch x - 1= x2/2+o(x2)Þ ch x = 1 + x2/2+o(x2)

4.4.11. Бесконечно большие функции. Сравнение бесконечно больших функций и связь с бесконечно малыми функциями.

В разделе 4.4.3 мы определили функции ББ, положительные ББ, отрицательные ББ и ввели обозначения : , , . Напомним одно из них.

Опр.4.4.8. f(x)®¥ при х®а (х®а+0, х®а-0, х®¥, х®+¥,  х®-¥) Û Û.

Теор. 4.4.11.1 о связи ББ и БМ функций. Пусть функции F(x) и j(x) связаны соотношением F(x)=. F(x) - ББ тогда и только тогда, когда j(x) -БМ.

 Док-во. Необходимость. Пусть F(x) - ББ, докажем, что   - БМ. Возьмём "e>0. По определению ББ, для М=1/e $d: 0<| x-a |<dÞ| F(x) |> М. Тогда , т.е. j(x) удовлетворяет определению БМ.

 Достаточность доказывается аналогично необходимости.

Итак, связь между ББ и БМ функциями достаточно простая. Поэтому кратко перечислим факты, относящиеся к сравнению ББ функций и аналогичные определениям и теоремам для БМ.

Опр. 4.4.11.1. Если - конечное число, отличное от нуля, то ББ функции F(х) и G(х) называются бесконечно большими одного порядка роста при х®а.

Опр. 4.4.11.2. Если =0, то ББ G(х) называется бесконечно большой более высокого порядка по сравнению с F(х) (F(х) называется бесконечно большой низшего порядка по сравнению с G(х)). Обозначение: F(x) = o(G(x)).

Опр. 4.4.11.3. Если =1, то ББ G(х) и F(х) называются эквивалентными.

Теор. 4.4.11.2. (Необходимое и достаточное условие эквивалентности ББ). Для того, чтобы ББ функции F(х) и G(х) были эквивалентными, необходимо и достаточно, чтобы выполнялось условие F(х) - G(х) = о(F(х)) (или F(х) - G(х) = о(G(х)).

Тройные интегралы в цилиндрических координатах Вычислить интеграл       где область U ограничена поверхностью x2 + y2 ≤ 1 и плоскостями z = 0, z = 1

Тройные интегралы в сферических координатах Пример Найти интеграл , где область интегрирования U − шар, заданный уравнением x2 + y2 + z2 = 25.

 

Решение дифференциальных уравнений с помощью рядов Фурье Найти решение в виде ряда Фурье дифференциального уравнения с граничными условиями .

Знакопеременные ряды. Абсолютная и условная сходимость Исследовать на сходимость ряд .

Неравенство Бесселя и равенство Парсеваля Вычислить сумму ряда .

Сходимость рядов. Признаки сравнения Пример Определить, сходится или расходится ряд .

Используя комплексную форму записи, найти ряд Фурье для функции

Пример Найти периодические решения дифференциального уравнения , где k − константа, а f (x) − периодическая функция.

Предположим, что f (x) является периодической функцией с периодом 2π. Пусть для . Найти разложение Фурье для заданной параболической функции.


Вычисление объемов с помощью тройных интегралов