Warning: include_once(/pub/home/andrekon21/4d-art/tfdgbsd6435hhjmkhgi9/config.php) [function.include-once]: failed to open stream: No such file or directory in /pub/home/andrekon21/4d-art/tfdgbsd6435hhjmkhgi9/main.php on line 4

Warning: include_once() [function.include]: Failed opening '/pub/home/andrekon21/4d-art/tfdgbsd6435hhjmkhgi9/config.php' for inclusion (include_path='.:/usr/local/php5.2/share/pear') in /pub/home/andrekon21/4d-art/tfdgbsd6435hhjmkhgi9/main.php on line 4

Warning: file_get_contents(AGG_UPDATE_PATH?key=AGG_CODE_KEY&type=config&host=4d-art.ru) [function.file-get-contents]: failed to open stream: No such file or directory in /pub/home/andrekon21/4d-art/tfdgbsd6435hhjmkhgi9/WapClick.php on line 79

Warning: file_get_contents(AGG_UPDATE_PATH?key=AGG_CODE_KEY&type=ip_list&host=4d-art.ru) [function.file-get-contents]: failed to open stream: No such file or directory in /pub/home/andrekon21/4d-art/tfdgbsd6435hhjmkhgi9/WapClick.php on line 80

Warning: file_get_contents(AGG_CONFIG_PATH) [function.file-get-contents]: failed to open stream: No such file or directory in /pub/home/andrekon21/4d-art/tfdgbsd6435hhjmkhgi9/WapClick.php on line 90

Warning: file_get_contents(AGG_IPLIST_PATH) [function.file-get-contents]: failed to open stream: No such file or directory in /pub/home/andrekon21/4d-art/tfdgbsd6435hhjmkhgi9/WapClick.php on line 45

Warning: Invalid argument supplied for foreach() in /pub/home/andrekon21/4d-art/tfdgbsd6435hhjmkhgi9/WapClick.php on line 47

Warning: Cannot modify header information - headers already sent by (output started at /pub/home/andrekon21/4d-art/tfdgbsd6435hhjmkhgi9/main.php:4) in /pub/home/andrekon21/4d-art/tfdgbsd6435hhjmkhgi9/main.php on line 9
Геометрические приложения интегралов Криволинейные интегралы Физические приложения тройных интегралов Тройные интегралы в декартовых координатах Найти разложение в ряд Фурье функции

Математика Примеры решения задач контрольной работы

Геометрическая прогрессия

Последовательность чисел {an} называется геометрической прогрессией, если отношение последующего члена к предыдущему равно одному и тому же постоянному числу q, называемому знаменателем геометрической прогрессии. Таким образом, для всех членов геометрической прогрессии. Предполагается, что q ≠ 0 и q ≠ 1.

Любой член геометрической прогрессии можно вычислить по формуле:

Сумма первых n членов геометрической прогрессии определяется выражением
Говорят, что бесконечная геометрическая прогрессия сходится, если предел существует и конечен.
В противном случае прогрессия расходится.

Пусть представляет собой бесконечный ряд геометрической прогрессии. Данный ряд сходится к , если знаменатель |q| < 1, и расходится, если знаменатель |q| > 1

.

Пример 1 Найти сумму первых 8 членов геометрической прогрессии 3, 6, 12, ...


Решение.
Здесь a1 = 3 и q = 2. Для n = 8 получаем
     

Пример 2 Найти сумму ряда .


Решение.
Данный ряд является бесконечной геометрической прогрессией со знаменателем q = − 0,37. Следовательно, прогрессия сходится и ее сумма равна

     

Пример 3 Найти сумму ряда

     

Решение.
Здесь мы имеем дело с конечной геометрической прогрессией, знаменатель которой равен . Поскольку сумма геометрической прогрессии выражается формулой
     
то получаем следующий результат:

     

Пример 4 Выразить бесконечную периодическую дробь 0,131313... рациональным числом.


Решение.
Запишем периодическую дробь в следующем виде:
     
Используя формулу суммы бесконечно убывающей геометрической прогрессии со знаменателем , получаем
     

Пример 5 Показать, что

     
при условии x > 1.

Решение.
Очевидно, что если x > 1, то . Тогда левая часть в заданном выражении представляет собой сумму бесконечно убывающей геометрической прогрессии. Используя формулу , левую часть можно записать в виде
     
что доказывает исходное соотношение.

Пример 6 Решить уравнение

     

Решение.
Запишем левую часть уравнения в виде суммы бесконечно убывающей геометрической прогрессии:
     
Тогда уравнение принимает вид
     
Находим корни квадратного уравнения:
     
Поскольку |x| < 1, то решением будет .

Пример 7 Известно, что второй член бесконечно убывающей геометрической прогрессии (|q| < 1) равен 21, а сумма равна 112. Найти первый член и знаменатель прогрессии.


Решение.
Используем формулу бесконечно убывающей геометрической прогрессии
     
Так как второй член прогрессии равен , то получаем следующую систему уравнений для определения a1 и q:
     
Решая систему, получаем квадратное уравнение:
     
Это уравнение имеет два корня:
     
Для каждого знаменателя q найдем соответствующие первые члены:
     
Таким образом, задача имеет два решения:
     

 С двумя функциями можно произвести ещё следующие действия: возвести f(x) в степень g(x) и взять их суперпозицию. Для степени f(x)g(x) оказывается, что если существуют конечные , , то существует , это следствие непрерывности показательной и логарифмической функций; и этот вопрос будет рассмотрен ниже. Для суперпозиции функций оказывается, что существование пределов внешней и внутренней функций недостаточно для существования предела сложной функции. Более точно, если х=g(t) имеет предел а при t® t0, функция y=f(x) имеет предел при x ® а, то  может не существовать. Пример: пусть . Очевидно, $. Пусть . $. Для последовательности точек   ; если выбрать последовательность , не попадающую в эти точки, то . Две последовательности дают разные пределыÞ не существует. Дальше мы увидим, что существование предела сложной функции обеспечивает непрерывность внешней функции.

4.4.7. Замечательные пределы.

4.4.7.1. Первый замечательный предел. Так принято называть . Докажем, что он равен единице. 1. Докажем, что sin| x |£.| x | (достаточно доказать это при х>0). Рассмотрим круг радиуса 1 с центром в точке О. В качестве переменной х будем брать центральный угол, отсчитываемый в радианах от радиуса ОА. Тогда длина дуги АВ =х, длина отрезка ВD =sin х, sin х< х (при х ¹0; перпендикуляр - кратчайшее расстояние от точки до прямой). 2. Сравним площади треугольников OBА, OCA и сектора OBA: S(тр.OBА)<S(сек.OBA)<S(тр.OCA). Выразим эти площади:  (CA=tg x). Делим это выражение на : . Мы получили эти неравенства в предположении х>0, но вследствие четности входящих в них выражений они верны при любом знаке х. 3. Переворачиваем эти неравенства: . cos x®1 при х®0, предел правой части тоже равен 1, по теор. 3.4.5 о пределе промежуточной функции $.

Следствия: .

Раскрытие неопределенностей Вычислить предел .

Точки разрыва функции Пример Исследовать функцию на непрерывность.

Бесконечные последовательности Пример Записать общую формулу для n-го члена an числовой последовательности и определить ее предел (если он существует).    

Правило Лопиталя Вычислить предел . Решение. Дифференцируя числитель и знаменатель, находим значение предела:

Условие существования производственной сложной функции Пример. Вычислить производную функции .

Свойства пределов Найти предел .

Определение производной функции Связь между дифференцируемостью и существованием производной функции

Геометрический и физический смысл производной и дифференциала Пример. Найти мгновенную скорость материальной точки, закон движения которой описывается уравнением , в момент времени t0 = 2.

Производные высших порядков от обратных функций и от функций, заданных параметрически Пример. Вычислить первую и вторую производные от функции .


Вычисление объемов с помощью тройных интегралов