Молекулярная физика и термодинамика

Дизайн интерьера

История изобразительного искусства
Арт-дизайн
Баухауз
Радикальный дизайн. Антидизайн
Дизайн интерьера
Виды планировок Свободная планировка
Дизайн квартир
Проектный анализ в дизайне среды
Назначение и структура
производственной среды
Дизайн интерьера нежилых помещений
Литература о дизайне
Фабрика пишущих машин, заложенная
Камилло Оливетти
Независимый дизайн
Стафф-дизайн
Профессиональный дизайн
Архитектор и интерьер-дизайнер в России
Мода в интерьере

Физика. Примеры решения задач
контрольной работы

Электрические машины
Задачи для самостоятельного решения
Лекции и конспекты по физике
Кинематика
Молекулярная физика и термодинамика

Математика Примеры решения задач

Векторная алгебра
и аналитическая геометрия
Математический анализ
Предел последовательности
Геометрическая прогрессия
Вычисление объемов с помощью
тройных интегралов
Двойные интегралы в полярных координатах
Геометрические приложения интегралов
Криволинейные интегралы
Физические приложения тройных интегралов
Тройные интегралы
в декартовых координатах
Найти разложение в ряд Фурье функции

Математика школьный курс лекций

Декартова система координат
Полярная и сферическаясистемы координат
Преобразование графиков функций
Обратные тригонометрические функции
Решение систем уравнений и неравенств
Теорема синусов
Изображение многоугольников и многогранников
Поверхности второго порядка
Исследовать систему уравнений

Энергетика

Курс лекций общая энергетика
Электрические станции

Детали машин

Механические передачи

Графика

Начертательная геометрия

Решение задач начертательной геометрии

 

Физические основы термодинамики Термодинамика, как и молекулярная физика, занимается изучением физических процессов, происходящих в макроскопических системах, т.е. в телах, содержащих огромное число микрочастиц, взаимодействующих друг с другом и внешними телами.

Молекулярная физика и термодинамика изучают один и тот же круг явлений, а именно макроскопические процессы в телах, т.е. такие явления, которые связаны с колоссальным количеством содержащихся в телах атомов и молекул. Но эти разделы физики, взаимно дополняя друг друга, отличаются различными подходами к изучаемым явлениям.

Предмет термодинамики: объекты и явления физики и химии, которые являются макроскопическим результатом событий в микромире, например диффузия, растворение, охлаждение, нагревание, плавление, испарение и т. д.

В соответствии со вторым началом термодинамики все мыслимые процессы могут быть разделены на два типа: процессы, которые реально никогда не происходят, хотя не противоречат первому началу термодинамики (например, самопроизвольное охлаждение изолированного тела с эквивалентным увеличением его кинетической энергии); процессы, которые могут быть реализованы.

Основное уравнение молекулярно-кинетической теории идеального газа Пусть в сосуде в виде куба со стороной l  находится N молекул. Рассмотрим движение одной из молекул

Распределение Максвелла по модулю скорости молекул Обозначим через dNv число молекул, скорости которых лежат в интервале от v до v+dv, тогда dNv/N – характеризует относительное число этих молекул. Принято вводить функцию распределения молекул по скоростям

Удельная теплоемкость - физическая величина, показывающая, какое количество теплоты требуется для изменения температуры вещества массой в 1 кг на 1°C.

Явления переноса До сих пор мы рассматривали исключительно равновесные системы, характеризующиеся при постоянных внешних условиях неизменностью параметров (Р, V, T, ) во времени и отсутствием в системе потоков вещества, энергии, импульса.

Работа газа при изменении его объема

Круговые процессы (циклы) Процесс, при котором система, пройдя через ряд состояний, возвращается в исходное состояние называется круговым процессом или циклом. На диаграмме процессов цикл изображается замкнутой кривой

Реальные газы. Фазовые переходы Силы и потенциальная энергия межмолекулярных взаимодействий

Примеры решения задач  Молекулярно-кинетическая теория идеальных газов Задача 1. Определить, сколько киломолей и молекул водорода содержится в объеме 50 м3 под давлением 767 мм рт. ст. при температуре 18°С. Какова плотность и удельный объем газа?

Задача. Чему равны средние кинетические энергии поступательного и вращательного движения молекул, содержащихся в 2 кг водорода при температуре 400 К.

Задача. При каком давлении средняя длина свободного пробега молекул водорода <λ> = 2,5 см при температуре 68°С? Диаметр молекул водорода принять равным d = 2,3·10 –10 м.

Вычислить массу столба воздуха высотой 1 км и сечением 1 м2, если плотность воздуха у поверхности Земли  а давление Р0 = 1,013 ∙ 105 Па. Температуру воздуха считать одинаковой.

Молекулярный пучок кислорода ударяется о неподвижную стенку. После соударения молекулы отражаются от стенки с той же по модулю скоростью. Определить давление пучка на стенку, если скорость молекул 500 м/с и концентрация молекул в пучке 5·10 24  м -3.

Кислород массой m = 2 кг занимает объем V1 = 1 м3 и находится под давлением р1 = 0,2 МПа. Газ был нагрет сначала при постоянном давлении до объема V2 = 3 м3, а затем при постоянном объеме до давления р3 = 0,5 МПа. Найти изменение ΔU внутренней энергии газа, совершенную им работу А и количество теплоты Q, переданное газу. Построить график процесса.

Уравнение динамики поступательного движения тела

Кислород массой 1 кг совершает цикл Карно. При изотермическом расширении газа его объём увеличивается в 2 раза, а при последующем адиабатическом расширении совершается работа 3000 Дж. Определить работу, совершенную за цикл.

Горячая вода некоторой массы отдает теплоту холодной воде такой же массы, и температуры их становятся одинаковыми. Показать, что энтропия при этом увеличивается.

Кинематика Основные формулы

Зависимость пройденного телом пути S от времени t даётся уравнением S=A+Bt+Ct2+Dt3, где С=0,14 , D=0,01 . Через какое время после начала движения ускорение тела будет равно 1 ? Чему равно среднее ускорение тела за время от t = 0 до t = 1 ?

Мерой инертности твердого тела при вращательном движении является момент инерции

Канат лежит на столе так, что часть его свешивается со стола, и начинает скользить тогда, когда длина свешивающейся части составляет 25% всей его длины. Чему равен коэффициент трения каната о стол?

Камень бросили под углом α = 60о к горизонту со скоростью υ0=15 м/с. Найти кинетическую, потенциальную и полную энергию камня: 1) спустя одну секунду после начала движения; 2) в высшей точке траектории. Масса камня m = 0,2 кг. Сопротивлением воздуха пренебречь.

Пуля, летящая горизонтально, попадает в шар, подвешенный на лёгком жёстком стержне, и застревает в нём. Масса пули в 1000 раз меньше массы шара. Расстояние от точки подвеса стержня до центра шара равно 1 м. Найти скорость пули, если известно, что стержень с шаром отклонился от удара на угол 10о.

Маховое колесо, имеющее момент инерции 245 кг∙м2, вращается с частотой 20 об/с. Через минуту после того, как на колесо перестал действовать вращающий момент, оно остановилось. Найти: 1) момент сил трения; 2) число оборотов, которое сделало колесо до полной остановки после прекращения действия сил.

Точка совершает гармоническое колебание. Период колебаний 2 с, амплитуда 50 мм, начальная фаза равна нулю. Найти скорость точки в момент времени, когда ее смещение от положения равновесия равно 25 мм.

Шар массой m = 1 кг, катящийся без скольжения, ударяется о стенку и откатывается от нее. Скорость шара до удара о стенку υ = 10 см/с, после удара 8 см/с. Найти количество тепла Q, выделившееся при ударе.

Амплитуда гармонических колебаний равна 50 мм, период 4 с и начальная фаза . а) Записать уравнение этого колебания; б) найти смещения колеблющейся точки от положения равновесия при t=0 и при t = 1,5 с; в) начертить график этого движения.

Период затухающих колебаний Т=4 с, логарифмический декремент затухания l = 1,6 , начальная фаза равна нулю. Смещение точки при t =  равно 4,5 см. 1) Написать уравнение этого колебания; 2) Построить график этого движения для двух периодов.

Основы молекулярной физики и термодинамики

Чему равны средние кинетические энергии поступательного и вращательного движения молекул, содержащихся в 2 кг водорода при температуре 400 К.

Задача. Определить, сколько киломолей и молекул водорода содержится в объеме 50 м3 под давлением 767 мм рт. ст. при температуре 18°С. Какова плотность и удельный объем газа?

Определить плотность разреженного азота, если средняя длина свободного пробега молекул 10 см. Какова концентрация молекул?

Определить скорость вылета поршня массой 4 кг из цилиндра при адиабатном расширении кислорода в 40 раз, если начальное давление воздуха 107 Па, а объем 0,3 л.

Определить удельные теплоемкости ср, сv, для смеси 1 кг азота и 1 кг гелия.

В результате изотермического расширения объем 8 г кислорода увеличился в 2 раза. Определить изменение энтропии газа.

Кислород массой m = 2 кг занимает объем V1 = 1 м3 и находится под давлением р1 = 0,2 МПа. Газ был нагрет сначала при постоянном давлении до объема V2 = 3 м3, а затем при постоянном объеме до давления р3 = 0,5 МПа. Найти изменение ΔU внутренней энергии газа, совершенную им работу А и количество теплоты Q, переданное газу. Построить график процесса.

Лед массой 2 кг, находящийся при температуре –10°С, нагрели и превратили в пар. Определить изменение энтропии.

Найдите внутреннюю энергию воздуха S = 1 м2 , h = 8,31 км

Два шарика r1 = 4 см и r2 = 2 см, нагретые до T0 = 1000К, находятся в вакууме на расстоянии  d0 = 0.6 м. Между шарами помещена небольшая пластинка ( r0 << d0 ). Найти на каком расстоянии α от первого шарика надо поместить пластину, чтобы температура ее была бы наименьшей.

Идеальный 3х атомный газ. Найти изменение энтропии при изменении объема.

Маленький шарик, обладающий свойствами черного тела нагрет до температуры T = 6000К

Бесконечная прямолинейная тонкая лента шириной =4 см заряжена с поверхностной плотностью

Лодка массой 200 кг стоит на некотором удалении S0 от берега высотой h = 6 м …Найти работу по перемещению лодки

Длинный прямой цилиндрический стержень квадратного сечения. Найти E электрического поля на поверхности стержня в точках, равноудаленных от его ребер.

Идеальный газ в количестве 2 моль совершает процесс