Кинематика Механические передачи Молекулярная физика и термодинамика Ядерная физика

Лабораторная работа по физике. Практические занятия

Электрические свойства кристаллов

Классическая электронная теория электропроводности металлов 

 Опыты, проведенные Рикке в 1901 г., Мандельштамом и Папалекси в 1913 г., Толменом и Стюартом в 1916 г. показали, что носителями тока в металлах являются электроны. Ток в металлах можно вызвать крайне малой разностью потенциалов. Это даёт основание считать, что электроны перемещаются по металлу практически свободно. Появление этих свободных электронов объясняется тем, что при образовании кристаллической решётки от атомов металлов легко отрываются слабее всего связанные валентные электроны. Можно показать, что концентрация их достигает электронов в . При такой высокой концентрации электронов средняя сила, действующая на электрон со стороны всех остальных электронов и ионов, равна нулю и, следовательно, электроны можно считать свободными частицами и их взаимодействие с ионами можно рассматривать как ряд последовательных соударений.

 В этом приближении система электронов может анализироваться как система одноатомных молекул идеального газа. Исходя из этого, Друде и позднее Лоренц распространили результаты кинетической теории газов (см лекции 1,2) на свободные электроны - на так называемый электронный газ и получили законы Ома, Джоуля-Ленца в дифференциальной форме.

  В позапрошлом семестре изучались эти законы [см. конспект лекций, ч. II, формулы (16), (38) в лекциях 6,7].

  Плотность тока проводимости равна произведению удельной электрической проводимости проводника на напряжённость электрического поля в проводнике, т.е.

  - закон Ома в дифференциальной форме. (1)

 Удельная тепловая мощность тока в проводнике равна произведению его удельной электрической проводимости на квадрат напряжённости электрического поля в проводнике, т. е.

 - закон Джоуля-Ленца в дифференциальной форме, (2)

где в (1) и (2) g - удельная электропроводность (g = 1/r).

 Друде и Лоренц показали, что для металлических проводников

  , (3)

где n - концентрация свободных электронов, e и m - заряд и масса электрона, álñ -средняя длина свободного пробега электрона, ávñ - средняя скорость теплового движения электрона. Согласно формуле (30) в лекции 1,2 ávñ  и при Т = 300 К, (масса электрона ), .

 Скорость же направленного движения (скорость дрейфа электрона), возникающего благодаря электрическому полю . Для , (заряд электрона ), vдр = = 0,78 мм/с, т. е. много меньше скорости теплового движения электрона.

 Итак, классическая теория объяснила законы Ома, Джоуля-Ленца, Видемана-Франца. Вместе с тем она имеет ряд недостатков.

 Строгий анализ с использованием квантовой теории показал, что не все валентные электроны свободно движутся по решётке с тепловыми скоростями, а лишь малая их часть. Подавляющее число валентных электронов в электропроводимости (как и в теплоёмкости) не участвуют. Это приводит к расхождениям между классической теорией и практикой. Например, из (3) следует, что ~ ~ , а на практике в большом диапазоне изменения температур g ~ 1/Т.

 Эти и другие расхождения объясняет квантовая теория.

Понятие о квантовой теории электропроводности металлов

  Согласно квантовой теории электрон в металле не имеет точной траектории, его можно представить волновым пакетом с групповой скоростью, равной скорости электрона. Квантовая теория учитывает движение электрона в периодическом поле решётки, что приводит к появлению эффективной массы электрона . Расчёт, выполненный на основе этого, приводит к формуле

 , (4)

которая по внешнему виде напоминает классическую формулу (3). Здесь n - концентрация электронов проводимости в металле, álFñ - средняя длина свободного пробега электрона, имеющего энергию Ферми, ávFñ - средняя скорость теплового движения такого электрона.

 Разгоняться в электрическом поле могут только электроны, энергия которых близка к уровню Ферми [см. лекцию 7], т. е. в проводимости участвует малая часть электронов, импульс которых m*<vF> близок к импульсу электрона на уровне Ферми PF, т. е. m*<vF> . С учётом этого из (4) следует, что g ~ álFñ.

 Увеличение температуры приводит к возрастанию тепловых колебаний кристаллической решётки, на которых рассеиваются электроны (на квантовом языке говорят о столкновении электронов с фононами), и длины свободного пробега электрона álFñ~ 1/s ~ . Здесь  - площади “сечения” колеблющихся атомов решётки, а - амплитуда колебания. Она связана с температурой ~ . Следовательно, álFñ ~ ~  и удельная электропроводность g ~ álFñ ~ 1/T, что согласуется с экспериментом.

Таким образом, квантовая теория объяснила электропроводность металлов.

Уравнение состояния идеального газа хорошо иллюстрируется геометрически. Так как в уравнение входят только три переменные, то любые две из них можно выбрать в качестве переменных, откладываемых по осям прямоугольной системы координат на плоскости, и при любом фиксированном значении третьей переменной уравнение состояния даст некоторую кривую (в частности, прямую) на плоскости. Так, задаваясь различными значениями температуры Т1,Т2,.., получаем для идеального газа семейство кривых, различающихся значениями параметра Т и называемых изотермами. В случае идеального газа кривая, получающаяся при постоянной температуре Т = Const, представляет собой равнобочную гиперболу на плоскости (Р,V). Изменяя значение параметра Т, мы получаем семейство гипербол, называемых изотермами идеального газа.

На рисунке 1 представлено семейство изотерм, описываемых уравнением (3.1). 

 


Изотермы идеального газа. Т3 > T2 > T1

Воспользуемся моделью идеального газа, чтобы рассмотреть изменение с изменением координаты давления газа, находящегося в однородном силовом поле, считая атмосферу газа изотермической. Пусть силовое поле направлено вдоль оси z (смотрите рис. 2), а потенциальная энергия одной молекулы в этом поле равна u. Тогда сила, действующая на одну молекулу f = -du/dz ( или fdz = - du), а изменение давления на dp при смещении на расстояние dz находится как отношение суммарной силы F, действующей на все молекулы внутри малого объема dV = Sdz, к площади S, то-есть dp = F/S = ndV*f /S = ndz*f = - ndu.

 Используя уравнение состояния идеального газа (3.3) и считая температуру газа постоянной, имеем dp = dn*kT, что позволяет сразу получить соотношение  dn/n = - du/kT, интегрируя которое получаем формулу Больцмана 

 n = no exp (- u/kT), (3.4)

показывающую распределение молекул газа в силовом поле. Здесь no - концентрация молекул на уровне нулевого значения потенциальной энергии.

 Чтобы получить из уравнения (3.4) зависимость давления воздуха от высоты местности (предполагая постоянство температуры) надо вспомнить, что n = P/kT,  а u = m1gh, где m1 - масса одной молекулы, g - ускорение силы тяжести, h - высота, и тогда P = Poexp (- m1gh/kT). Теперь, умножая числитель и знаменатель в показателе экспоненты на число Авогадро, и помня, что m1NA = M (масса моля), а kNA = R (газовая постоянная), получаем барометрическую формулу

 

 (3.5)

 Закон распределения частиц в поле силы тяжести был использован французским ученым Перреном (1909г) для наиболее точного (для своего времени) экспериментального определения числа Авогадро.


Деление кристаллов на диэлектрики, металлы и полупроводники