Кинематика Механические передачи Молекулярная физика и термодинамика Ядерная физика

Лабораторная работа по физике. Практические занятия

Атомная физика

Модель атома Дж. Дж. Томсона (“пудинг с изюмом”)

Атом представляет собой положительно заряженную сферу, в которую вкраплены отрицательно заряженные частицы - электроны.

Модель атома Резерфорда (планетарная модель)

На основании опытов по рассеянию a-частиц тонкой металлической фольгой Резерфорд предложил следующую модель атома:

- весь положительный заряд и почти вся масса атома сосредоточена в маленьком ядре (диаметр порядка 10-14 м) (“солнце”)

- ядро окружено вращающимися вокруг него отрицательно заряженными электронами (“планеты”) Элементы теории дифракции Строгая постановка задачи дифракции В большинстве реальных электромагнитных задачах поверхность раздела сред нельзя считать безграничной и плоской. А падающую волну плоской электромагнитной волной. В этом случае при падении электромагнитной волны на тело конечных размеров наряду с явлением отражения и преломления возникает процесс называемый дифракцией. В этом разделе будут рассмотрены методы решения задач рассеяния электромагнитной волны на металлических, расположенных в однородном изотропном пространстве. Волны будем считать гармоническими, металлические тела — идеально проводящими, а бесконечное изотропное пространство без потерь.

- размер атома порядка 10-10 м, большая часть пространства в атоме является “пустой”

- нейтральность атомов обеспечивается равенством отрицательного заряда электронов и положительного заряда ядра

На основании этой модели необъяснимы:

1. Стабильность атомов (ускоренно движущийся электрон должен все время излучать электромагнитные волны, терять энергию; в результате, за время порядка 10-8 с он должен упасть на ядро)

2. Линейчатые спектры излучения атомов (частота излучения атома должна быть равна частоте обращения электрона, а она (см. п. 1) все время изменяется из-за потерь энергии на излучение)

II.3 Модель атома Бора

Для исправления недостатков планетарной модели Бор предложил теорию атома водорода, основанную на следующих постулатах:

1. Электрон обращается вокруг протона в атоме водорода, совершая равномерное движение по круговой орбите под действием кулоновской силы и в соответствии с законами Ньютона.

* 2. Из всех возможных орбит являются разрешенными только те, для которых момент импульса электрона равен целому числу, умноженному на h / (2p), т.е.

,  n = 1, 2, 3, ...

где h - постоянная Планка

3. При движении электрона по разрешенной орбите атом не излучает энергию.

4. При переходе электрона с одной орбиты с энергией Еi на другую орбиту с энергией Еj (Еi>Еj) излучается фотон с частотой

5. При поглощении фотона электрон переходит с орбиты с меньшей энергией на орбиту с большей энергией.


Планк “квантует” энергию излучателей, Эйнштейн - излучаемый свет. Бор соединил оба эти представления: представление о световом кванте заключено в боровском условии частот, планковское представление о квантовых состояниях излучателя - в квантовых условиях для стационарных орбит электронов в атоме.

II.3а Лазер (Light Amplification by Stimulated Emission of Radiation)

Лазер (оптический квантовый генератор, ОКГ) - источник оптического когерентного излучения, действие которого основано на усилении света в результате индуцированного излучения атомов. Излучение лазера характеризуется высокой направленностью и большой плотностью энергии.

Индуцированное излучение - процесс испускания электро-магнитных волн возбужденными атомами под действием вынуждающего излучения. Частота, фаза, поляризация н направление испускаемого и вынуждающего излучения совпадают.

II.4 Волны де Бройля

Гипотеза де Бройля:

Если световые волны имеют корпускулярную природу, то и частицы (например, электрон) должны проявлять волновые свойства:

Если для фотона Е = hn = mc2 = pc Þ p = h / l, то и любой частице можно поставить в соответствие волновой процесс с частотой n = Е / h и длиной волны l = h / p.

* II.5 Матричная механика Гейзенберга

Характерной особенностью величин, играющих главную роль в теории строения атома, является их попарная связь между собой и невозможность одновременного точного указания обеих, связанных таким образом величин. Математические правила, с помощью которых можно производить выкладки с такого рода величинами составляют содержание матричной механики.

* II.6 Волновая механика Шредингера

Путем обобщения идей де Бройля можно построить системы стоячих волн, амплитуды которых вполне правильно изображают вероятность нахождения электрона в различных точках вблизи ядра. Таким путем может быть построена волновая механика атома, вполне эквивалентная матричной механике Гейзенберга.

II.7 Принципы, сформулированные в процессе развития квантовой физики

Корпускулярно-волновой дуализм.

Любые микрообъекты материи обладают свойствами и частиц (корпускул), и волн.

* Принцип дополнительности.

При экспериментальном исследовании микрообъекта могут быть получены точные данные либо о его энергиях и импульсах, либо о поведении в пространстве и времени. Эти две взаимоисключающие картины: энергитически-импульсная и пространственно-временная, получаемые при взаимодействии микрообъекта с соответствующими измерительными приборами, “дополняют” друг друга.

* Принцип неопределенности.

Характеризующие физическую систему т. н. дополнительные физические величины (напр., координата и импульс) не могут одновременно принимать точные значения. Принцип отражает двойственную, корпускулярно-волновую природу частиц материи.

Принцип соответствия.

Новая теория, претендующая на более широкую область применимости, чем старая, должна включать последнюю как предельный случай.

ЭЛЕМЕНТЫ ЯДЕРНОЙ ФИЗИКИ.

I. Элементарные частицы

Элементарный электрический заряд - наименьший электрический заряд, известный в природе, равен 1,60219´10-19 Кл

Элементарные частицы - частицы, которым на современном уровне знаний нельзя приписать определенную внутреннюю структуру. Название “элементарные” - условное, т.к. эти частицы представляют собой весьма сложные физические объекты.

* Спин - собственный механический момент количества движения элементарной частицы или атомного ядра.

Античастицы  Античастицей по отношению к некоторой элементарной частице называется такая частица, масса и спин которой точно равны массе и спину данной частицы, а остальные характеристики (напр., электрический заряд) равны по величине и противоположны по знаку тем же характеристикам частицы.

Аннигиляция - такое превращение частицы и античастицы, при котором они исчезают, превращаясь в другие частицы.

Электрон (e) - устойчивая элементарная частица с отрицательным элементарным электрическим зарядом, составная часть атомов всех веществ, масса me=9,1095´10-31 кг. Античастица - позитрон (е+)

Протон (p) - устойчивая элементарная частица с массой 1836 электронных масс и положительным элементарным электрическим зарядом. Входит в состав всех атомных ядер. Античастица - антипротон ().

Нейтрон (n) - электрически нейтральная элементарная частица с массой 1838 электронных масс. Входит в состав атомных ядер. Античастица - антинейтрон ().

Нуклон - общее название протонов и нейтронов.

Позитрон (е+) - элементарная частица, являющаяся античастицей электрона. Масса позитрона равна массе электрона, его электрический заряд положителен и равен элементарному заряду.

Нейтрино (n) - электрически нейтральная элементарная частица, масса покоя которой равна нулю. Античастица - антинейтрино ( )

Приборы для регистрации элементарных частиц - макросистемы, способные находиться в двух состояниях, неустойчивом и устойчивом. Возмущающее действие частицы приводит к переходу из неустойчивого состояния в устойчивое. Каждый такой переход - регистрация частицы. Типы приборов:

- газоразрядный счетчик Гейгера

- камера Вильсона

- пузырьковая камера

- толслослойные фотоэмульсии

* Классификация элементарных частиц:


 электроны мюоны мезоны барионы


 пионы каоны  нуклоны гипероны


 протоны нейтрон

II. Радиоактивность.

Атомное ядро - положительно заряженная центральная часть атома, в которой сосредоточена основная его масса. Состоит из протонов и нейтронов, причем число протонов определяет заряд ядра Z, а полное число протонов и нейтронов в основном определяет массу и называется массовым числом A. Обозначение: (М - символ данного элемента).

Ядерные силы - силы, действующие между нуклонами и определяющие вместе с электромагнитными силами строение и свойства ядер. Характерные особенности:

- очень большая величина

- малый радиус действия

- свойство насыщения

- зарядовая независимость


Радиоактивность - самопроизвольное превращение неустойчивых атомных ядер в ядра других элементов, сопровождающееся испусканием ядерных излучений. Эти излучения имеют сложный состав: a-частицы, b-частицы, g-лучи.

a-частица - ядро атома гелия

b-частица -  электрон.

g-лучи - коротковолновое электромагнитное излучение с длиной волны менее 0,1 нм.

Типы радиоактивности:

- альфа-распад (a-распад) 

-  деление атомных ядер (см. п.III)

- бета-распад (b--распад)

 (b+-распад)

- переход ядра из возбужденного состояния в невозбужденное (g-излучение)

В технических приложениях термодинамики весьма важна роль циклических процессов, так как тепловые машины используются для циклического преобразования энергии хаотического движения микрочастиц в механическую энергию макроскопических тел. Если задаться целью детального исследования циклов, то надо знать все промежуточные состояния, непосредственное изучение которых не всегда возможно хотя бы потому, что термодинамика утверждает существование уравнений состояния только для равновесных состояний. Выход из затруднения дает существование (хотя бы теоретическое) обратимых процессов, для которых пути системы из начального состояния в конечное и, следовательно, все промежуточные состояния, не играют никакой роли. Значение имеют лишь различия в начальном и конечном (равновесных) состояниях.

Поскольку реальный путь перехода системы из одного состояния в другое проследить не удается, поскольку неизвестно как быть с термодинамическими параметрами в неравновесных промежуточных состояниях, то реальный переход моделируется (мысленно заменяется) бесконечно медленным (и поэтому обратимым) квазистатическим переходом из начального состояния в конечное. При таком переходе система все время остается в состоянии термодинамического равновесия, и, следовательно, все время можно говорить о существовании уравнения состояния. При этом сравнительно легко просчитываются изменения любых функций состояния, а по ним вычисляются представляющие практический интерес термодинамические характеристики.

С другой стороны, быстропротекающие (скорость изменения внешних условий велика по сравнению со скоростью реакции, то есть быстротой релаксации системы), и в силу этого обратимые (не в строгом смысле), процессы сродни квазистатическим. Поэтому квазистатические процессы являются хорошей моделью столь быстрых процессов, когда необратимость не успевает проявить себя, так как не успевает произойти заметного выравнивания интенсивных термодинамических параметров. Таким образом, только кажется, что в природе редко осуществляются обратимые процессы. На самом деле, поскольку все необратимые процессы требуют времени для своего осуществления и характеризуются временем релаксации, и если процесс происходит настолько быстро, что система не успевает “срелаксировать”, то процесс практически обратим, поскольку длительность процесса много меньше времени релаксации. А поскольку общие свойства обратимых процессов можно изучать на частном случае процессов, протекающих столь медленно, что систему можно считать все время находящейся в состоянии теплового равновесия (когда все термодинамические параметры связаны через уравнение состояния), то квазистатические процессы оказываются моделью любых обратимых, в том числе и быстропротекающих, процессов. Именно в этом и состоит смысл рассмотрения бесконечно-медленных (на практике никогда не реализуемых) процессов, именуемых квазистатическими.

Необратимыми процессами являются все процессы самопроизвольного перехода термодинамических систем из неравновесного состояния в равновесное. Они не обязательно связаны с наличием макроскопических движений, но если таковые присутствуют, то после их прекращения под влиянием сил трения, кинетическая энергия этих макроскопических движений переходит в хаотическую энергию микродвижений, которая распределяется по всему объему системы. Происходит диссипация, то есть рассеяние энергии.


Деление кристаллов на диэлектрики, металлы и полупроводники