Кинематика Механические передачи Молекулярная физика и термодинамика Ядерная физика

Лабораторная работа по физике. Практические занятия

Основное уравнение молекулярно-кинетической теории идеального газа

Пусть в сосуде в виде куба со стороной l находится N молекул. Рассмотрим движение одной из молекул. Пусть молекула движется из центра куба в одном из 6 возможных направлений (рис.1) , например параллельно оси Х со скоростью v. Ударяясь о стенку А куба молекула оказывает на него давление (см. рис. 2). Найдем его. Согласно второму закону Ньютона сила давления , где . Предполагая, что происходит абсолютно упругий удар,  имеем v1=v2=v. Изменение импульса . Молекула

вернется в исходное состояние ( в центр куба) спустя время dt=(0.5l+0.5l)/v=l/v. В итоге получаем выражение для силы давления, оказываемого на стенку сосуда одной молекулой,

 . (10)

Если число молекул в сосуде N, то к cтенке А движется

в среднем N/6 молекул и они создают среднюю силу давления на стенку 

,  (11)

где <v 2> - cредний квадрат скорости молекул [cм. формулы (17), (18)].

 Давление, оказываемое на стенку сосуда, площадь которой S=l2,

  (12) 

 Учитывая, что N/l3=N/V=n, т.е. равно концентрации молекул, а также, что 

 (13)

-средняя кинетическая энергия поступательного движения молекулы газа, получаем из (12) основное уравнение молекулярно-кинетической теории идеального газа . (14) Такое же давление производят молекулы на другие стенки сосуда, поскольку молекулы газа движутся хаотически и не имеют какого-либо преимущественного направления движения.

 Итак, согласно (14) давление на стенки сосуда определяется произведением концентрации молекул n на их среднюю кинетическую энергию поступательного движения <Wк>.

Молекулярно-кинетическое толкование термодинамической температуры Учитывая, что n=N/V=NA(m/M)/V, где V - объем газа, перепишем (14) в виде .  (15) 

С другой стороны согласно уравнению Клапейрона-Менделеева РV=(m/M)RT = (m/M)NAkT. Таким образом

.  (16)

Итак, термодинамическая температура с точностью до постоянного множителя (3/2)k равна средней кинетической энергии поступательного движения молекулы.

Таково молекулярно-кинетическое толкование термодинамической температуры. 

Учитывая, что , где

<v2>= (17)

средний квадрат скорости молекул газа, из (16) находим среднюю квадратичную скорость <vKB>=. (18)

Например, при t=27° C или T=300 K молекулы кислорода (М=32∙10-3 кг/моль) имеют скорость <vKB>=483 м/c. 

Барометрическая формула. Распределение Больцмана

При выводе уравнения (14) предполагалось, что на молекулы газа внешние силы не действуют, поэтому молекулы равномерно распределены по объему. Однако молекулы газа находятся в поле тяготения Земли, поэтому их концентрация с высотой уменьшается. Покажем это.

Рассмотрим газ в сосуде (см. рис. 3). Если атмосферное давление на высоте h равно Р, то на высоте h+dh оно равно Р+dP (при dh>0 dP<0, т.к. давление с высотой убывает). Разность давлений Р и Р+dP равна весу газа, заключенного в объеме цилиндра высотой dh с основанием 1 м2: Р -(Р+dP)=rgdh, где r - плотность газа. Следовательно, 

dP= -rgdh.  (19)

Воспользовавшись уравнением Клапейрона-Менделеева РV=RT , находим, что . Подставив это выражение в (19), получим

  или . (20)

Интегрируя (20) от h=0 до h находим, .Проведя потенцирование получим барометрическую формулу. , (21)

где m0=M/NA, k=R/NA.

 Эта формула была впервые установлена в 1821 г. Лапласом.

 Анализ барометрической формулы (21) показывает, что чем больше молярная масса М газа, тем быстрее его давление убывает с высотой. Поэтому атмосфера по мере увеличения высоты все более обогащается легкими газами.

 Следует иметь в виду, что применимость формулы (21) к реальной атмосфере несколько ограничена, поскольку атмосфера в действительности не находится в тепловом равновесии, и ее температура меняется с высотой. Тем не менее, ее используют, определяя высоту по изменению давления.

 Формулу (21) можно преобразовать, если воспользоваться выражением (9) Р=nkT 

 , (22)

где m0gh=Wп - потенциальная энергия молекулы в поле тяготения, т.е.

 . (23)

 Больцман доказал, что формула (21) справедлива в случае потенциального поля любой природы (т.е. не только поля тяготения). В связи с этим функцию (23) называют распределением Больцмана. 

Закон Максвелла о распределении молекул идеального газа по скоростям

 В газе, находящемся в состоянии равновесия, установится некоторое стационарное (не меняющееся со временем) распределение молекул по скоростям, которое подчиняется вполне определенному статистическому закону. Такой закон был теоретически выведен Максвеллом в 1859 г. и был опубликован в 1860 г.

 При выводе этого закона Максвелл предполагал, что газ состоит из очень большого числа N тождественных молекул, находящихся в состоянии беспорядочного теплового движения при одинаковой температуре. Предполагалось также, что внешние поля на газ не действуют.

 Закон Максвелла описывается некоторой функцией f(v), называемой функцией распределения молекул по скоростям. Различают три формы записи распределения Максвелла. Мы изучим одну из них.

 

Что же такое теплота и как ее измерять?

С точки зрения молекулярно-кинетической теории теплота связана с энергией хаотического движения микрочастиц, которая передается от одних тел к другим при тепловых процессах. Что речь здесь идет именно об энергии, следует из того, что разные виды энергии (механическая, электрическая, магнитная) могут преобразовываться в теплоту, что подтверждается многочисленными опытами, например, нагреванием тел при трении или охлаждением газов при совершении ими работы. Поэтому естественно в качестве единицы измерения теплоты взять единицу энергии (в СИ – джоуль). Раньше, когда связь теплоты и работы не была еще выяснена, единицей измерения теплоты являлась калория, которая определялась через количество теплоты, необходимой для нагревания одного грамма воды на один градус Цельсия (1кал = 4,2 Дж).

Еще раз подчеркнем, что когда речь идет о теплоте (тепле, количестве тепла), то имеется в виду количество энергии, передаваемой немеханическим способом. И хотя можно говорить о количестве энергии, которую имеет данная термодинамическая система, но нельзя говорить о количестве теплоты, заключенном в данном теле, как нельзя говорить о количестве работы в данном теле (работа является мерой энергии, переданной механическим, то есть силовым способом). Таким образом, в отличие от энергии, которая является функцией состояния системы, теплота (как и работа) в общем случае является функцией процесса передачи энергии. Переход системы из одного состояния в другое может осуществляться разными путями с передачей разного количества теплоты (и совершения при этом разной работы), хотя изменение энергии системы при этом будет то же самое.

Необходимость введения еще одной, но интенсивной характеристики для систем, участвующих в тепловых процессах, вытекает из представления о разной степени “нагретости” одного и того же тела. Так, одинаковые количества воды, взятые из колодца и из кипящей кастрюли, производят различное тепловое действие (тот же эффект ожога). Мы говорим в таких случаях, что вода в кастрюле и в колодце имеет разную степень нагретости. Мера нагретости тела получила название температуры.

С точки зрения молекулярно-кинетической теории различие в температуре означает различную интенсивность хаотического движения микрочастиц термодинамической системы. Средняя кинетическая энергия одной микрочастицы растет пропорционально  квадрату среднего импульса. Давление есть результат передачи импульсов при ударах молекул. С возрастанием скоростей молекул давление должно возрастать пропорционально квадрату усредненной скорости, так как с увеличением скорости в равной мере возрастает как импульс, так и число ударов молекул о стенки в единицу времени, а произведение импульса на скорость прямо пропорционально кинетической энергии. Энергия газа пропорциональна давлению, о чем можно догадаться уже из определения работы dA = РdV (плотность энергии и давление имеют одинаковую размерность), а давление пропорционально квадрату среднего импульса, то есть средней кинетической энергии одной частицы. Из молекулярно-кинетического смысла температуры видно, что эта характеристика связана с дискретностью вещества на микроскопическом уровне, с существованием средней кинетической энергии, приходящейся на одну частицу.

А на макроскопическом уровне изменение температуры проявляется наиболее ярко в изменении размеров тел по мере их нагревания или охлаждения (при сохранении неизменными других термодинамических параметров). Именно это свойство, изменение размеров с изменением температуры, чаще всего используется для создания приборов, измеряющих температуру – термометров. Поскольку при измерении температуры речь идет об измерении энергии, приходящейся в среднем на одну микрочастицу, то измерять ее в привычных для нас макроскопических единицах, джоулях, довольно неудобно, так как слишком велика единица измерения. Поэтому используется другая единица измерения энергии – градус Кельвина, совпадающий по величине с градусом Цельсия (но превосходящий в 1,8 раза градус Фаренгейта). Коэффициент перевода градусов Кельвина в джоули называется постоянной Больцмана и равен 1,38.10-23 Дж/К.


Деление кристаллов на диэлектрики, металлы и полупроводники