Прямая доставка чая из Китая

Гуманитарные науки

Гуманитарные науки

Студенческий файлообменник

Студенческий файлообменник

Выполнение 
работ на заказ. Контрольные, курсовые и дипломные работы

Выполнение работ на заказ. Контрольные, курсовые и дипломные работы

Занимайтесь онлайн 
        с опытными репетиторами

Занимайтесь онлайн
с опытными репетиторами

Приглашаем к сотрудничеству преподователей

Приглашаем к сотрудничеству преподователей

Готовые шпаргалки, шпоры

Готовые шпаргалки, шпоры

Отчет по практике

Отчет по практике

Приглашаем авторов для работы

Авторам заработок

Решение задач по математике

Закажите реферат

Закажите реферат

Кинематика Механические передачи Молекулярная физика и термодинамика Ядерная физика

Лабораторная работа по физике. Практические занятия

Примеры решения задач

1. Молекулярно-кинетическая теория идеальных газов

Задача 1. Определить, сколько киломолей и молекул водорода содержится в объеме 50 м3 под давлением 767 мм рт. ст. при температуре 18°С. Какова плотность и удельный объем газа?

Дано:

V = 50 м3

Ρ = 767 мм. рт. ст. @ 767·133 Па

Т = 291 К

М = 2 кг/моль

Решение:

На основании уравнения Менделеева – Клайперона:

  устанавливаем число киломолей ν, содержащихся в заданном объеме V. Зная р - давление, V – объем, Т – температуру газа, R – молярную газовую постоянную 

ν – ?

N – ?

ρ – ? 

d – ?

можно определить ν:

Число молекул N, содержащихся в данном объеме, находим, используя число Авогадро NА (которое определяет какое количество молекул содержится в одном киломоле). Общее количество молекул, находящихся в массе m данного газа, может быть установлено, так как известно число молей ν.

Подставляя в формулу число киломолей, устанавливаем число молекул, содержащихся в объеме V: .

Плотность газа ρ = m/V определяем из уравнения Менделеева - Клайперона:

Подставляя числовые значения в единицах СИ в формулу, определим плотность газа:

Удельный объем газа d определяем из уравнения Менделеева - Клайперона:

Ответ: 11,9 м3/кг.

Задача 2. В сосуде объемом 2 м3 находится смесь 4 кг гелия и 2 кг водорода при температуре 27°С. Определить давление и молярную массу смеси газов.

Дано:

V = 2 м3

m1= 4 кг

М1= 4·10-3 кг/кмоль

m2= 2 кг

М2= 2·10-3 кг/кмоль

Т1= 300 К 

Решение:

Воспользуемся уравнением Менделеева - Клайперона, применив его к гелию и водороду:

 (1)

 (2)

где р1 – парциальное давление гелия; m1 – масса гелия;

р - ?

М - ?

М1 – его молярная масса; V – объем сосуда; Т – температура газа; R = 8,31 Дж/(моль·К) –молярная газовая постоянная; р2 – парциальное давление водорода; m2 – масса водорода; М2 – его молярная масса.

По закону Дальтона:  (3)

Из уравнений (1) и (2) выразим р1 и р2 и подставим в уравнение (3):

 (4)

С другой стороны, уравнение Менделеева - Клайперона для смеси газов имеет вид:

 (5)

Сравнивая (4) и (5) найдем молярную массу смеси газов по формуле:

 , (6)

где ν1 и ν2 – число молей гелия и водорода соответственно.

 

Ответ: 3·10-3 кг/моль.

Энтропия в замкнутых системах. Обратимость процессов как условие сохранения энтропии. Энтропия и необратимость. Неравенство Клаузиуса

Для пояснения связи энтропии с неполной превращаемостью теплоты в работу обратимся снова к циклу Карно, используя целесообразную в данном случае дифференциальную форму записи. Поскольку никаких потерь в машине Карно нет, то полученную за цикл от машины работу можно представить как разность теплоты, полученной рабочим телом (идеальным газом) от нагревателя, и теплоты, отданной рабочим телом холодильнику, то есть dA = dQн - dQх. Теперь воспользуемся выражением для коэффициента полезного действия машины Карно (4.1) dAdQн = 1 - dQх /dQн =1 - Тх /Тн. Откуда dQх /dQн = Тх /Тн . При передаче теплоты рабочему телу в изотермическом процессе равны температуры Тн = Трт нагревателя и рабочего тела и, соответственно, равны отданная нагревателем теплота и теплота, полученная рабочим телом, dQн = dQрт. Теперь, используя выражение (5.1) для изменения энтропии, мы можем представить принципиально не преобразуемую в работу за цикл часть взятой у нагревателя теплоты выражением dQх = Тх (dQн / Тн) = Тх (dQрт / Трт ) = ТхdS ,

из которого видно, что количество принципиально не преобразуемой в работу за цикл теплоты зависит от температуры холодильника тепловой машины и изменения в рабочем цикле энтропии рабочего тела, а именно равно их произведению. Здесь речь идет о том количестве энтропии, которое забирается рабочим телом у нагревателя и отдается холодильнику, и при этом понижается степень хаотичности состояния нагревателя, но в равной мере повышается степень хаотичности холодильника, а в целом хаотичность состояния всей системы остается неизменной. Поскольку каждый из сомножителей в правой части равенства в замкнутой системе не может быть равен нулю, то невозможно за цикл не отдавать часть теплоты холодильнику (утрачивая после этого возможность ее дальнейшего преобразования в работу).

Уравнение (5.1) показывает, что в теплоизолированной термодинамической системе энтропия может сохраняться, но это условие (отсутствие теплообмена с внешним миром) является лишь необходимым, но не достаточным условием для сохранения энтропии.

Опыт показывает, что в изолированных системах даже при отсутствии теплообмена энтропия может возрастать, если в них идут релаксационные процессы самопроизвольного выравнивания термодинамических параметров. Для возвращения системы в первоначальное состояние теперь необходимо внешнее воздействие – систему можно квазистатическим образом перевести в начальное состояние, используя отвод теплоты и вычисляя необходимое уменьшение энтропии согласно уравнению (5.1).

Спонтанные (самопроизвольные) изменения в теплоизолированной (адиабатически замкнутой) системе всегда ведут к возрастанию энтропии. В этой асимметрии течения природных процессов заключена причина различимости прошлого и будущего.

С течением релаксационных процессов в системе постепенно утрачивается возможность преобразования теплоты в работу, которая раньше существовала в силу наличия перепадов (неравномерности по объему) интенсивных параметров, например, при выравнивании температур нагревателя и холодильника у тепловой машины. Происходит также так называемая диссипация (рассеяние) энергии за счет работы сил трения, то есть превращение энергии макроскопических движений тел в энергию хаотического движения микрочастиц. Это означает, что самопроизвольно степень хаотичности состояния системы может только увеличиваться, но никогда не убывает, оставаясь неизменной в замкнутых системах лишь в случае протекания в них полностью обратимых процессов.


Деление кристаллов на диэлектрики, металлы и полупроводники