Прямая доставка чая из Китая

Гуманитарные науки

Гуманитарные науки

Студенческий файлообменник

Студенческий файлообменник

Выполнение 
работ на заказ. Контрольные, курсовые и дипломные работы

Выполнение работ на заказ. Контрольные, курсовые и дипломные работы

Занимайтесь онлайн 
        с опытными репетиторами

Занимайтесь онлайн
с опытными репетиторами

Приглашаем к сотрудничеству преподователей

Приглашаем к сотрудничеству преподователей

Готовые шпаргалки, шпоры

Готовые шпаргалки, шпоры

Отчет по практике

Отчет по практике

Приглашаем авторов для работы

Авторам заработок

Решение задач по математике

Закажите реферат

Закажите реферат

Кинематика Механические передачи Молекулярная физика и термодинамика Ядерная физика

Лабораторная работа по физике. Практические занятия

Задача 3. При каком давлении средняя длина свободного пробега молекул водорода <λ> = 2,5 см при температуре 68°С? Диаметр молекул водорода принять равным d = 2,3·10 –10 м.

Дано:

<λ>= 2,5·10-2 м

Т= 341 К 

d= 2,3·10-10 м

NA = 6,02·1026 кмоль-1

Решение:

Давление водорода при температуре Т можно найти по уравнению Менделеева- Клайперона, в котором удобно ввести число молекул n0 в 1 м3.

р – ?

Это проводится следующим образом:

Руководство к лабораторной работе 320 Изучение космического излучения у поверхности Земли Цель работы: изучить космическое излучение, его проис­хождение, состав и свойства; методы регистрации космических лучей; измерить интенсивность космического излучения у поверхности Земли.

; ;

где NA – число Авогадро и k – постоянная Больцмана.

Следовательно,  Так как , имеем .

Число молекул в 1 м3 выразим через среднюю длину свободного пробега. Из формулы , находим  Таким образом:

Ответ: 0,8 Па.

 Задача 4. Определить плотность разреженного азота, если средняя длина свободного пробега молекул 10 см. Какова концентрация молекул?

Дано:

< λ > = 10 см = 0,1 м

Решение:

Средняя длина пробега молекулы определяется формулой:

р - ?

n0 - ?

 , (1)

где d – эффективный диаметр молекул (для азота d = 0,31·10 –9 м).

Концентрацию молекул найдем из равенства: 

  , (2) 

где NA – число Авогадро; М = 28·10 –3 кг/моль – молярная масса азота.

Решая совместно уравнения (1) и (2), находим: 

 

Ответ: 1,09·10-6 кг/м3.

Задача 5. Вычислить коэффициент внутреннего трения и коэффициент диффузии кислорода, находящегося при давлении 0,2 МПа и температуре 280 К.

Дано:

p = 2·105 Па 

d = 2,9·10-10 м

М = 32·10-3 кг/моль 

Т = 280 К

Решение:

На основании представлений молекулярно – кинетической теории газов коэффициент внутреннего трения идеального газа (динамическая вязкость) и коэффициент диффузии определяются по формулам:

η - ?

D - ?

 (1);  (2),

где ρ – плотность газа; < λ > – средняя длина свободного пробега молекул; <υар> – средняя арифметическая скорость молекул.

Из (1) и (2) следует  (3)

Среднюю арифметическую скорость и среднюю длину свободного пробега молекул находим по формулам:

 (4) , (5)

где R = 8,31 Дж/(моль·К) – молярная газовая постоянная; Т – термодинамическая температура; d = 2,9·10 –10 м – эффективный диаметр молекулы кислорода; n0 – число молекул в 1 м3 (концентрация).

Из уравнения Менделеева - Клайперона определяем n0

 (см. задачу 3):  (6)

где р – давление; k = 1,38·10 –23 Дж/К – постоянная Больцмана.

Подставляя (6) в уравнение (5), получаем: . (7)

Окончательный вид расчетной формулы для коэффициента диффузии найдем, подставляя выражения (4) и (7) в уравнение (2):

  . (8)

Плотность кислорода определяется по формуле:. С учетом (6) имеем: . (9)

Подставляя (9) и (8) в (3), получаем расчетную формулу для коэффициента внутреннего трения: .

Вычисляем: 

Ответ: .

Задача 6. Наружная поверхность кирпичной стены площадью 25 м2 и толщиной 37 см имеет температуру 259 К, а внутренняя поверхность–293 К. Помещение отапливается электроплитой. Определить ее мощность, если температура в помещении поддерживается постоянной. Теплопроводность кирпича  0,4 Вт/(м·К).

Дано:

S = 25 м2 

D = 37 см = 0,37 м

T1 = 259 K 

T2 = 293R

χ = 0,4 Вт/(м·К)

Решение:

Количество теплоты, прошедшее через наружную стену, определим по закону Фурье:

  (1)

где t – время протекания теплоты.

 

N - ?

За время t – электроплита должна выделить такое же количество теплоты:  (2)

Приравнивая правые части уравнений (1) и (2), получаем:

 ,

откуда 

Ответ: 0,92 кВт.

В необратимых процессах проявляется еще одно свойство энтропии, не связанное прямо с введением понятия энтропии, для чего было вполне достаточно рассмотрения полностью обратимых процессов (пусть даже в мысленных, идеализированных экспериментах).

Второе начало термодинамики иногда формулируют как принцип неубывания энтропии в замкнутых системах при любых процессах, идущих в этих системах, и записывают математически как


Таким образом, второе начало термодинамики несет в себе двойное содержание.

Во-первых, принцип существования и сохранения энтропии, утверждающий существование функции состояния, характеризующей степень хаотичности состояния термодинамической системы, и сохранение этой функции в замкнутых системах, при условии протекания в них полностью обратимых процессов. Принцип сохранения энтропии означает невозможность никаким способом понизить энтропию в полностью изолированных термодинамических системах.

Во-вторых, принцип самопроизвольного возрастания энтропии в замкнутых системах при протекании в них необратимых процессов. Это значит, что степень хаотичности термодинамической системы, находящейся в неравновесном состоянии, самопроизвольно возрастает до тех пор, пока в системе не установится термодинамическое равновесие. При приближении изолированной системы к состоянию теплового равновесия энтропия системы стремится к максимуму.

В тех случаях, когда энтропия возрастает не только за счет поступления в систему теплоты извне, но и за счет спонтанно (самопроизвольно) идущих релаксационных процессов, термодинамическое тождество превращается в неравенство Клаузиуса. В общей форме оно записывается в виде

 TdS > dU + dA. (5.6)

Запишем его в форме, связанной с газообразным состоянием тел,

 TdS > dU + PdV . (5.7)

Это неравенство играет большую роль при рассмотрении процессов приближения термодинамических систем к равновесию в случаях, когда система открыта, то есть не изолирована от внешнего мира. Наше знание того, что при приближении системы к равновесию энтропия стремится к максимуму, позволяет через неравенство Клаузиуса найти функции (разные для разных случаев открытости), которые при приближении открытых систем к равновесию стремятся к своему экстремуму (минимуму). Этими функциями являются: внутренняя энергия, энтальпия, свободная энергия и термодинамический потенциал Гиббса. Подробнее об этих функциях будет рассказано ниже.


Деление кристаллов на диэлектрики, металлы и полупроводники