Прямая доставка чая из Китая

Гуманитарные науки

Гуманитарные науки

Студенческий файлообменник

Студенческий файлообменник

Выполнение 
работ на заказ. Контрольные, курсовые и дипломные работы

Выполнение работ на заказ. Контрольные, курсовые и дипломные работы

Занимайтесь онлайн 
        с опытными репетиторами

Занимайтесь онлайн
с опытными репетиторами

Приглашаем к сотрудничеству преподователей

Приглашаем к сотрудничеству преподователей

Готовые шпаргалки, шпоры

Готовые шпаргалки, шпоры

Отчет по практике

Отчет по практике

Приглашаем авторов для работы

Авторам заработок

Решение задач по математике

Закажите реферат

Закажите реферат

Кинематика Механические передачи Молекулярная физика и термодинамика Ядерная физика

Лабораторная работа по физике. Практические занятия

Задача 9. Вычислить массу столба воздуха высотой 1 км и сечением  1 м2, если плотность воздуха у поверхности Земли  а давление Р0 = 1,013 ∙ 105 Па. Температуру воздуха считать одинаковой.

Дано:

h = 1 км = 1000 м

S = 1 м2

Т = const

Р0=1,013 ∙ 105 Па

 = 1,2 кг/м 3 

Решение:

Атмосферное давление меняется с высотой, плотность воздуха также является функцией высоты . Массу воздуха в элементе объема dV представим в виде:

dm =  .

Найдем изменение плотности воздуха с высотой.

 m – ?

Согласно уравнению состояния идеального газа

 

 . (1)

Продифференцировав (1), получим  (2)

С другой стороны убыль давления dP при переходе от высоты h0 к высоте h0 + dh

  (3)

где – плотность воздуха на высоте h.

Используя уравнения (2) и (3) получим:

или

Вычислим массу столба воздуха

 

Подставив данные, приведенные в условии задачи получим:

m = 1,13 · 103 кг.

Ответ: m = 1,13 · 103 кг.

Задача 10. Определить скорость вылета поршня массой 4 кг из цилиндра при адиабатном расширении кислорода в 40 раз, если начальное давление воздуха 107 Па, а объем 0,3 л.

Дано:

Т = 4 кг 

V2/V1 = 40 

p1 = 10 7Па

V1 = 0,3 л = 3·10-4 м3

Решение:

Работа А, совершаемая адиабатически расширяющимся воздухом, в данном случае идет на увеличение кинетической энергии поршня, т. е

υ - ?

,

где т и υ – масса и скорость поршня.

Для подсчета работы адиабатически расширяющегося газа воспользуемся формулой: , где γ – отношение теплоемкостей газа при постоянном давлении и постоянном объеме (для кислорода γ =1,4).

 Так как , то

Ответ: 54 м/с.

Цикл Карно является идеальным, то есть предельным по эффективности циклом относительно любой реальной тепловой машины. Отсутствие каких-либо потерь или нерационального расходования энергии на всех этапах связано с полной обратимостью всех рассматриваемых в машине Карно процессов.

 Поэтому машину Карно можно заставить пройти все этапы цикла в обратном направлении, расходуя при этом внешнюю энергию в виде работы внешних сил и отнимая теплоту у более холодного резервуара и передавая ее более нагретому. Именно этим занимается обычный холодильник, понижающий температуру в некотором выделенном объеме пространства. Эффективность работы машины, решающей такую задачу, оценивается холодильным коэффициентом, определяемым как отношение изъятой из холодильной камеры теплоты Q2 к работе, затраченной на перенос этой теплоты в резервуар с более высокой температурой: 

 Q2/A = Q2Q1 - Q2) = T2/(T1 - T2) = (1 - 

Это выражение показывает, что холодильный коэффициент тем больше, чем меньший перепад температур надо преодолеть для транспортировки теплоты от более холодного тела к более нагретому (и, обратите внимание, чем меньший КПД имеет при этом цикл Карно).

Второй пример использования тепловой машины, работающей в обратном направлении, это так называемый тепловой насос, который подобно холодильнику забирает теплоту у более холодного тела и передает ее более нагретому. Отличие в том, что здесь эффективность работы оценивается не по количеству изъятой у более холодного тела теплоты, а по количеству переданной более теплому. Таким образом, производительность теплового насоса определяется как отношение полученной нагреваемым телом теплоты Q1 к затраченной на это работе:

 k = Q1/A = Q1/( Q1 - Q2) = 1/   

Здесь, как и в случае холодильника, коэффициент, характеризующий эффективность работы, оказывается больше единицы, но противоречия с законом сохранения энергии, конечно, нет. Нет, поскольку речь идет не о преобразовании энергии одного вида в другой, а только лишь о транспортировке энергии одного и того же вида (энергии хаотического движения микрочастиц) с одного уровня температуры на другой. Работа лишь позволяет, взяв некоторое количество теплоты от более холодного тела, передать большее количество теплоты более нагретому телу, и ничто не мешает количеству транспортируемой энергии быть больше, чем работа, затраченная на эту транспортировку (не говоря уже о том, что саму работу без препятствий можно преобразовать в теплоту). На практике тепловой насос может использоваться для так называемого “динамического отопления”, когда взятая из морозной атмосферы теплота используется для обогрева теплых жилых помещений.


Деление кристаллов на диэлектрики, металлы и полупроводники