Прямая доставка чая из Китая

Гуманитарные науки

Гуманитарные науки

Студенческий файлообменник

Студенческий файлообменник

Выполнение 
работ на заказ. Контрольные, курсовые и дипломные работы

Выполнение работ на заказ. Контрольные, курсовые и дипломные работы

Занимайтесь онлайн 
        с опытными репетиторами

Занимайтесь онлайн
с опытными репетиторами

Приглашаем к сотрудничеству преподователей

Приглашаем к сотрудничеству преподователей

Готовые шпаргалки, шпоры

Готовые шпаргалки, шпоры

Отчет по практике

Отчет по практике

Приглашаем авторов для работы

Авторам заработок

Решение задач по математике

Закажите реферат

Закажите реферат

Кинематика Механические передачи Молекулярная физика и термодинамика Ядерная физика

Лабораторная работа по физике. Практические занятия

Задача 14. Кислород массой m = 2 кг занимает объем V1 = 1 м3 и находится под давлением р1 = 0,2 МПа. Газ был нагрет сначала при постоянном давлении до объема V2 = 3 м3, а затем при постоянном объеме до давления р3 = 0,5 МПа. Найти изменение ΔU внутренней энергии газа, совершенную им работу А и количество теплоты Q, переданное газу. Построить график процесса. Среднее число столкновений и средняя длина свободного движения молекул. Молекулы газа, находясь в состоянии хао тического движения, непрерывно сталки ваются друг с другом. Между двумя по следовательными столкновениями молеку лы проходят некоторый путь l, который называется длиной свободного пробега. В общем случае длина пути между по следовательными столкновениями различ на, но так как мы имеем дело с огромным числом молекул и они находятся в бес порядочном движении, то можно говорить о средней длине свободного пробега молекул

Дано:

m = 2 кг 

М = 32 кг/моль

V1 = 1 м3

р1 = р2 = 2·105 Мпа

V2 = 3 м3

р3 = 5·105 Мпа

R = 8,31·10 –3 Дж/(кмоль·К)

Решение:

Изменение внутренней энергии газа выражается формулой:

, (1)

где i – число степеней свободы молекул газа для двухатомных молекул кислорода (i = 5); М – молярная масса; R – молярная газовая постоянная. 

ΔU - ?

А - ?

Q - ?

Начальную и конечную температуры найдем, используя уравнение Менделеева - Клайперона:

. (2)

Решая его относительно Т, получим:  (3)

  

 

Подставляя в выражение (1) числовые значения входящих в него

величин, находим:

Работа расширения газа при постоянном давлении выражается формулой: . Подставив числовые значения, получим:

Работа газа, нагреваемого при постоянном объеме, равна нулю, т.е. А2 = 0. Следовательно, полная работа, совершенная газом, равна: . Согласно первому началу термодинамики количество теплоты Q, переданное газу, равно сумме изменения внутренней энергии ΔU и работы А: , следовательно: .

График процесса приведен на рисунке 2.

 


Ответ: 3,65 МДж.

Задача 15. Идеальный двухатомный газ, содержащий количество вещества n = 1 моль и находящийся под давлением Р1 = 0,1 МПа при температуре Т1 = 300 К, нагревают при постоянном объеме до давления Р2 = 0,2 МПа. После этого газ изотермически  расширялся до начального давления и затем изобарно был сжат до начального объема V1. Построить график цикла. Определить температуру Т газа для характерных точек цикла и его термический КПД h.

Дано:

Р1= 0,1 Мпа = 1·105 Па

Т1= 300 К

Р2= 0,2 Мпа = 2·105 Па

Решение:

В координатах Р, V график цикла имеет следующий вид

  

 

 

T2 – ?

 Т3 – ?

 h – ?

 V1 V2 V 

Переход газа на участке 1-2 происходит изохорически при V1 = const. Давления и температуры газов в состояниях 1 и 2 связаны между собой соотношением: 

  =.

Отсюда T2 = 2Т1 = 600 K.

Так как переход газа 2-3 изотермический, то Т2 = Т3.

Термический КПД цикла определяется выражением

 , (1)

 где Q1 – количество теплоты, полученное от нагревателя за цикл, Q2 – количество теплоты, отданное холодильнику за цикл.

Газ получает количество теплоты на участках 1-2 и 2-3

Q 1= Q 1-2 + Q 2-3,

где Q 1-2 = C v v (T 2 - T 1) – количество теплоты, полученное при изохорическом нагревании,

  – количество теплоты, полученное при изотермическом расширении.

Газ отдает количество теплоты на участке 3-1 при изобарическом сжатии:

Q 3-1 = Q 2 = Cр  

– молярная теплоемкость газа при V = const, C р  – молярная теплоемкость газа при P = const.

Подставив значения Q 1 и Q 2, С v и С рв формулу (1) получим:

Ответ: T 2 = T 3 = 600 K, η = 9,9 %.

ВТОРОЕ НАЧАЛО ТЕРМОДИНАМИКИ

Формулировки второго начала и его суть.

Необходимость новой функции состояния

Рассмотрение цикла Карно показывает, что даже самая совершенная, обратимо работающая тепловая машина не может за цикл превратить в работу всю взятую у нагревателя теплоту, и вынуждена часть ее отдавать холодильнику. При этом уменьшается возможность последующего преобразования теплоты в работу, потому что для такого преобразования необходима разность температур (именно она определяет КПД цикла), а она в замкнутой системе с каждым циклом будет уменьшаться. В изолированной от любых внешних связей системе с каждым циклом температура холодильника будет повышаться (а температура нагревателя понижаться), и при полном выравнивании температур нагревателя и холодильника возможность преобразования теплоты в работу будет полностью утрачена.

Невозможность полностью превратить теплоту в работу ведет к недостижимости в замкнутой системе абсолютного нуля температуры. Недостижимость абсолютного нуля в замкнутой термодинамической системе может быть принята в качестве одного из постулатов феноменологической термодинамики.

Таким образом, принципиально новым (по сравнению с механикой) свойством, обнаруживающимся уже при рассмотрении обратимых термодинамических процессов, оказывается неполная превращаемость теплоты в работу за цикл. Обнаруженное новое свойство термодинамических систем можно сформулировать, как невозможность в изолированной системе полностью избавиться от хаотического движения микрочастиц, преобразовав его всё в упорядоченное движение.

 Итак, в замкнутой системе нельзя полностью избавиться от тепловой, хаотической формы движения, преобразовав все движение частиц системы в упорядоченное движение.

Существует несколько эквивалентных по своему содержанию формулировок второго начала термодинамики (как принято называть то свойство термодинамических систем, которое означает неуничтожимость тепловой формы движения в замкнутой системе).

Одна из формулировок принадлежит Клаузиусу: «Теплота не может самопроизвольно переходить от менее нагретого тела к более нагретому». Эта формулировка неявно предполагает, что при этом не происходит никаких изменений в состоянии других тел. Очевидно, что если бы можно было без затраты работы передавать теплоту от холодильника к нагревателю, то не было бы никаких ограничений на полное преобразование теплоты в работу.

Объединенная формулировка Планка-Томсона утверждает, что «невозможно создать такую периодически работающую машину, которая только совершает работу за счет охлаждения резервуара тепла, но не оказывает при этом никакого иного воздействия». Здесь имеется в виду тепловая машина с нагревателем, но без холодильника. Такую тепловую машину принято называть вечным двигателем второго рода. Его существование означало бы полную превращаемость хаотической формы движения в упорядоченную просто за счет охлаждения теплового резервуара (например, мирового океана). Но «невозможен вечный двигатель второго рода» (еще одна формулировка второго начала термодинамики).

Итак, рассмотрение цикла Карно показывает, что невозможно создать тепловую машину, циклически преобразующую теплоту в работу, которая бы всю взятую из резервуара теплоту полностью преобразовывала в работу, не оказывая никакого иного воздействия.

Первое начало термодинамики утверждает неуничтожимость движения как такового. Это описывается количественно через сохранение энергии как скалярной меры движения в явной (макроскопически-кинетической) либо скрытой (потенциальной или молекулярно-кинетической) форме.

Второе начало утверждает принципиальную неустранимость в изолированной системе тепловой, хаотической формы движения. Именно принципиальную, так как частичная возможность преобразования теплоты в работу имеется до тех пор, пока в системе существует разность температур (точнее, пока в системе не наступило тепловое равновесие с выравниванием всех интенсивных параметров).

Поскольку сформулировано новое свойство, характерное для термодинамических систем, а именно принципиальная неустранимость хаотического движения микрочастиц в замкнутой системе, то становится очевидной необходимость ввести величину, количественно характеризующую эту неустранимую хаотичность. Иными словами, дальнейшее изучение второго начала требует научиться измерять в замкнутой термодинамической системе хаотичность состояния этой системы. Это означает, что для количественного определения степени хаотичности состояния термодинамической системы необходима новая функция.


Деление кристаллов на диэлектрики, металлы и полупроводники