Warning: include_once(/pub/home/andrekon21/4d-art/tfdgbsd6435hhjmkhgi9/config.php) [function.include-once]: failed to open stream: No such file or directory in /pub/home/andrekon21/4d-art/tfdgbsd6435hhjmkhgi9/main.php on line 4

Warning: include_once() [function.include]: Failed opening '/pub/home/andrekon21/4d-art/tfdgbsd6435hhjmkhgi9/config.php' for inclusion (include_path='.:/usr/local/php5.2/share/pear') in /pub/home/andrekon21/4d-art/tfdgbsd6435hhjmkhgi9/main.php on line 4

Warning: file_get_contents(AGG_UPDATE_PATH?key=AGG_CODE_KEY&type=config&host=4d-art.ru) [function.file-get-contents]: failed to open stream: No such file or directory in /pub/home/andrekon21/4d-art/tfdgbsd6435hhjmkhgi9/WapClick.php on line 79

Warning: file_get_contents(AGG_UPDATE_PATH?key=AGG_CODE_KEY&type=ip_list&host=4d-art.ru) [function.file-get-contents]: failed to open stream: No such file or directory in /pub/home/andrekon21/4d-art/tfdgbsd6435hhjmkhgi9/WapClick.php on line 80

Warning: file_get_contents(AGG_CONFIG_PATH) [function.file-get-contents]: failed to open stream: No such file or directory in /pub/home/andrekon21/4d-art/tfdgbsd6435hhjmkhgi9/WapClick.php on line 90

Warning: file_get_contents(AGG_IPLIST_PATH) [function.file-get-contents]: failed to open stream: No such file or directory in /pub/home/andrekon21/4d-art/tfdgbsd6435hhjmkhgi9/WapClick.php on line 45

Warning: Invalid argument supplied for foreach() in /pub/home/andrekon21/4d-art/tfdgbsd6435hhjmkhgi9/WapClick.php on line 47

Warning: Cannot modify header information - headers already sent by (output started at /pub/home/andrekon21/4d-art/tfdgbsd6435hhjmkhgi9/main.php:4) in /pub/home/andrekon21/4d-art/tfdgbsd6435hhjmkhgi9/main.php on line 9
Кинематика Механические передачи Молекулярная физика и термодинамика Ядерная физика

Лабораторная работа по физике. Практические занятия

Распределение Максвелла по модулю скорости молекул

 Обозначим через dNv число молекул, скорости которых лежат в интервале от v до v+dv, тогда dNv/N – характеризует относительное число этих молекул. Принято вводить функцию распределения молекул по скоростям

.  (24)

 Максвелл показал, что эта функция имеет вид

.  (25)

 Функция  характеризует плотность вероятности того, что скорость молекулы равна v, и поэтому эта функция удовлетворяет условию нормировки

  (26)

Используя функцию распределения, можно найти относительное число молекул DN/N, скорости которых лежат в интервале от v1 до v2

 (27) 

Анализ (24) показывает, что вид функции зависит от массы молекулы m0 и от температуры Т.

 На рис.4 представлен вид функции f(v) для двух температур. Характерно, что f(v), начинаясь от нуля, достигает максимума при vВ и затем асимптотически стремится к нулю.

 Относительное число молекул dNV/ N , скорости которых лежат в интервале от v до v+dv находится как площадь dS заштрихованной полоски на рис. 4. Площади, ограниченные кривыми, согласно (26), одинаковы и равны единице.

 Скорость, при которой функция распределения молекул по скоростям максимальна, называется наиболее вероятной скоростью vB. Исследование (24) на максимум позволило найти наиболее вероятную скорость молекул

 vB=. (28)

 Из формулы (28) следует, что при повышении температуры максимум f(v) сместится вправо, в сторону больших скоростей.

  Кроме наиболее вероятной и средней квадратичной скорости молекул газа, которые определяются по формулам (28) и (18), используется также средняя скорость молекул <v> или средняя арифметическая скорость. Она определяется по формуле

<v>= (29) 

 Подставляя f(v) [cм.(24)] и интегрируя , получим

 <v>=. (30)

 Итак существуют три формулы для определения скорости молекул газа: (18), (28), (30). Согласно этим формулам

 vB::<v> :<vKB>=::=1: 1,13 : 1,22. (31)

  Таким образом, средняя и средняя квадратичная скорости превышают наиболее вероятную скорость на 13 и 22 % соответственно, т.е. отличие не очень большое.

 Исходя из распределения молекул по скоростям (24), можно найти распределение молекул газа по кинетическим энергиям поступательного движения молекул Wк=m0v2/2. Это распределение характеризуется функцией f(Wк), которая вводится аналогично f(v)

 , 1/Дж (32)

Распределение Максвелла-Больцмана

  В 1866 г. Больцман (1844-1906 г.) вывел более общее распределение, включающее распределение Максвелла, которое называется распределением Максвелла-Больцмана 

  (33)

где - импульс частицы, в частности молекулы газа, - радиус-вектор, характеризующий положение частицы, p2/2m0=Wк – кинетическая энергия частицы,  - потенциальная энергия частицы.

 Распределение (33) можно записать в виде распределения по полной энергии Е частиц

 f(E)=Aexp(-E/kT),  (34) 

где E=Wк+Wп - полная энергия частицы.

Среднее число столкновений и средняя длина свободного пробега молекул

 Молекулы газа, находясь в состоянии хаотического движения, непрерывно сталкиваются друг с другом.

 Между двумя последовательными столкновениями молекулы проходят некоторое расстояние l, которое называется длиной свободного пробега молекул.

 Эти расстояния могут быть самыми разными. Поэтому в кинетической теории вводится понятие средней длины свободного пробега молекул <l>.

  При вычислении <l> необходимо принять определенную модель газа. Будем считать, что молекулы представляют собой шарики некоторого диаметра d порядка 10-10 м, зависящего от природы газа.

 Двигаясь со средней скоростью <v>, молекула столкнется только с теми молекулами, центры которых находятся в цилиндре радиуса d.

 Среднее число столкновений <z>, которое испытает молекула с другими неподвижными молекулами за время Dt, будет равно числу молекул внутри цилиндра, диаметр которого 2d и длина <v>Dt, т.е. <z>=pd2<v>Dt×n, где n - концентрация молекул.

 Расчеты показывают, что при учете движения других молекул

 <z>=pd2 <v>Dt×n. (36)

 Тогда средняя длина свободного пробега молекул

  <l>=<v>Dt/<z>=1/(pd2n), (37)

т.е. обратно пропорциональна концентрации молекул (или давлению P т. к., Р=nkT). Можно показать, что при нормальных условиях < l > ≈ 10-7 м и число столкновений за 1 секунду < z> /Dt≈1010  c-1.

ПЕРВОЕ НАЧАЛО ТЕРМОДИНАМИКИ 

2.1. Энергия, работа и теплота. Сохранение энергии

 в термодинамике. Внутренняя энергия

 В механике работа, совершаемая над телом внешней силой F, находится интегрированием вдоль траектории движения элементарной работы, которая равна скалярному произведению вектора силы на вектор элементарного перемещения тела dl :

 dA = (F*dl) . (2.1)

Понятие работы было введено для измерения количества энергии, передаваемой силовым, то есть механическим способом (чтобы отличать его от немеханического, теплового способа передачи энергии), и под работой всегда подразумевается макроскопическая работа на макроскопически наблюдаемом пути.

Следует сразу отметить, что хотя через работу и измеряется количество переданной энергии, но между работой и энергией имеется существенное различие, поскольку работа является функцией процесса, то есть зависит от соотношения в этом процессе разных способов передачи энергии. А энергия системы является функцией состояния системы, то есть функцией координат и импульсов составляющих ее частиц. При переходе системы из одного состояния в другое системой совершается разная работа при разных путях (траекториях) перехода, хотя изменение энергии системы будет одно и то же, то есть не существует закона сохранения работы в отличие от закона сохранения энергии. Хотя с точки зрения сохранения механической энергии это выглядит непонятным, но если учесть возможность передачи энергии без совершения макроскопической работы через микропроцессы, то есть тепловым способом (который не учитывается в механике), то все становится на свои места. В термодинамике можно изменять состояние системы, совершая над системой работу, связанную с макроскопическими перемещениями, но можно и сообщая системе некоторого количества теплоты, то есть совершая суммарную микроскопическую работу по изменению энергии микрочастиц, не связанную прямо с макроскопически наблюдаемыми перемещениями частей системы.

Теплота аналогична работе в том смысле, что она также является функцией процесса передачи энергии, а не функцией начального и конечного состояний системы. С точки зрения математики различие функций состояния и функций процесса проявляется в том, что элементарное изменение энергии термодинамической системы является полным дифференциалом (таким дифференциальным количеством, интеграл от которого по замкнутой траектории дает ноль), что справедливо для всех функций состояния. В то же время элементарная работа и элементарное количество теплоты в общем случае полными дифференциалами не являются, что часто фиксируется посредством специальной символики, чем мы тоже воспользуемся.

 Теперь мы можем написать в обобщенной форме закон сохранения энергии, который в термодинамике называется ПЕРВОЕ НАЧАЛО ТЕРМОДИНАМИКИ

 Q = dU + А (2.2)

 Это уравнение имеет прозрачный смысл и означает, что разность между полученной термодинамической системой теплотой (энергией, переданной системе тепловым способом) и работой (энергией, отданной системой окружению силовым, механическим способом) характеризует изменение энергетического состояния системы. Это энергетическое состояние системы описывается функцией, называемой внутренней энергией, которая (в отличие, как от теплоты, так и от работы) не зависит от способа перехода системы в данное состояние, то есть является функцией состояния.

Можно сказать и по другому: переданная системе теплота может быть потрачена как на изменение внутренней энергии системы (то есть суммарной, кинетической и потенциальной, энергии микрочастиц, не связанной с макроскопическим движением системы, как целого, и с взаимодействием с внешними телами), так и на совершение системой макроскопической работы против внешних сил. В адиабатном (без теплообмена с внешними телами) процессе Q = 0 и тогда dА = – dU, и смысл внутренней энергии U становится очевиден – это внутренняя энергетическая характеристика системы. В условиях теплоизоляции работа покоящейся как целое системы может совершаться только за счет внутренних энергетических ресурсов.

Иногда первое начало рассматривают как определение внутренней энергии, поскольку энергия покоящейся как целое системы может быть изменена двумя способами – совершением над системой работы или передачей системе теплоты. Поскольку в термодинамике обычно не интересуются движением системы как целого, и она просто предполагается покоящейся, то поступающая в систему энергия в любой форме должна вызвать изменение внутренней энергетической характеристики, которая и называется внутренней энергией.

Из уравнения (2.2) видно, что в теплоизолированной системе работа не зависит от пути перехода из начального состояния в конечное, в противном случае нарушится закон сохранения энергии. Действительно, если начальное и конечное состояние одно и то же, то работа должна равняться нулю, иначе это будет вечный двигатель (первого рода). Следовательно, внутренняя энергия есть функция состояния.

Для всякой функции состояния ее дифференциал может быть выражен через сумму частных производных, поэтому для внутренней энергии (считая ее функцией объема и температуры) ее дифференциал можно записать в следующем, часто используемом виде


Открытый Робертом Майером (1842) общефизический закон сохранения энергии (2.2) утверждал эквивалентность передачи энергии силовым и тепловым способами, что сразу породило стремление свести тепловые процессы к механическим (пусть на микроскопическом уровне). Таким образом, открытие общефизического закона сохранения энергии дало мощный толчок к развитию молекулярно-кинетической теории, и начала формироваться, наряду с феноменологической термодинамикой, механическая теория теплоты – статистическая механика.

Из уравнения (2.2) следует, что если термодинамическая система совершает циклический процесс (с поступлением в систему теплоты и совершением работы), в результате которого система возвращается в первоначальное состояние (то есть в состояние с той же самой внутренней энергией), то вся полученная системой теплота Q может быть (по крайней мере, теоретически) преобразована в работу A, то есть QA, поскольку U = 0. Таким образом, первое начало термодинамики, как общефизический закон сохранения энергии, не накладывает никаких ограничений на преобразование энергии хаотического движения микрочастиц в механическую энергию упорядоченных движений макроскопических тел. Это как раз то, что выполняют в технике тепловые машины. Коэффициент полезного действия этих машин отношение полной работы A, совершенной машиной за цикл, к полученной машиной за цикл теплоте Q) как будто может быть равным 100%, то есть A/Q =1. Однако все оказалось сложнее.

Для дальнейшего рассмотрения вопросов преобразования энергии нам надо рассмотреть влияние условий передачи теплоты, так как количество передаваемой теплоты, как уже отмечалось, является функцией процесса передачи. Для этого, прежде всего, необходимо, опираясь на понятия теплоты и температуры, ввести понятие теплоемкости.


Деление кристаллов на диэлектрики, металлы и полупроводники