Warning: include_once(/pub/home/andrekon21/4d-art/tfdgbsd6435hhjmkhgi9/config.php) [function.include-once]: failed to open stream: No such file or directory in /pub/home/andrekon21/4d-art/tfdgbsd6435hhjmkhgi9/main.php on line 4

Warning: include_once() [function.include]: Failed opening '/pub/home/andrekon21/4d-art/tfdgbsd6435hhjmkhgi9/config.php' for inclusion (include_path='.:/usr/local/php5.2/share/pear') in /pub/home/andrekon21/4d-art/tfdgbsd6435hhjmkhgi9/main.php on line 4

Warning: file_get_contents(AGG_UPDATE_PATH?key=AGG_CODE_KEY&type=config&host=4d-art.ru) [function.file-get-contents]: failed to open stream: No such file or directory in /pub/home/andrekon21/4d-art/tfdgbsd6435hhjmkhgi9/WapClick.php on line 79

Warning: file_get_contents(AGG_UPDATE_PATH?key=AGG_CODE_KEY&type=ip_list&host=4d-art.ru) [function.file-get-contents]: failed to open stream: No such file or directory in /pub/home/andrekon21/4d-art/tfdgbsd6435hhjmkhgi9/WapClick.php on line 80

Warning: file_get_contents(AGG_CONFIG_PATH) [function.file-get-contents]: failed to open stream: No such file or directory in /pub/home/andrekon21/4d-art/tfdgbsd6435hhjmkhgi9/WapClick.php on line 90

Warning: file_get_contents(AGG_IPLIST_PATH) [function.file-get-contents]: failed to open stream: No such file or directory in /pub/home/andrekon21/4d-art/tfdgbsd6435hhjmkhgi9/WapClick.php on line 45

Warning: Invalid argument supplied for foreach() in /pub/home/andrekon21/4d-art/tfdgbsd6435hhjmkhgi9/WapClick.php on line 47

Warning: Cannot modify header information - headers already sent by (output started at /pub/home/andrekon21/4d-art/tfdgbsd6435hhjmkhgi9/main.php:4) in /pub/home/andrekon21/4d-art/tfdgbsd6435hhjmkhgi9/main.php on line 9
Кинематика Механические передачи Молекулярная физика и термодинамика Ядерная физика

Лабораторная работа по физике. Практические занятия

Задача 18. Горячая вода некоторой массы отдает теплоту холодной воде такой же массы, и температуры их становятся одинаковыми. Показать, что энтропия при этом увеличивается.

Решение:

Пусть температура горячей воды T1, холодной – T2, а температура смеси Θ. Определим температуру смеси, исходя из уравнения теплового баланса:

, или

откуда:  . (1)

Изменение энтропии, происходящее при охлаждении горячей воды:

.

Изменение энтропии, происходящее при нагревании холодной воды:

.

Изменение энтропии системы равно

,

или с учетом соотношения (1) имеем: .

Так как , то  и .

Поэтому , т.е. энтропия возросла.

Ответ: энтропия увеличивается.

Задача 19. Лед массой 2 кг, находящийся при температуре –10°С, нагрели и превратили в пар. Определить изменение энтропии.

Дано:

Решение:

Изменение энтропии определяется по формуле:

.

Общее изменение энтропии равно сумме , где  – изменения энтропии, происходящие на отдельных этапах процесса:

.

∆S - ?

1. Изменение энтропии  происходит при нагревании льда от начальной температуры T1 = 263 K до температуры плавления T2= 273 K: , так как , то , где m – масса льда; с1 – удельная теплоемкость льда.

2. Изменение энтропии  происходит при плавлении льда. В этом случае . Тогда: , где T2 – температура плавления льда; λ – удельная теплота плавления.

3. Изменение энтропии  происходит при нагревании воды от температуры T2 до температуры кипения T3 = 373 K. Величина  вычисляется аналогично :

,

где с2 – удельная теплоемкость воды.

4. Изменение энтропии  происходит при испарении воды; так как , то

,

где r – удельная теплота парообразования.

Общее изменение энтропии

 Ответ: 1,73·104 Дж/К.

Задача 20 . Резиновый шнур, жесткость которого k = 3 ·  H/м под действием груза удлинился на см. Считая процесс растяжения шнура изотермическим и происходящим при температуре t = 27°C, определить изменение энтропии.

Дано: Решение:

  k = 3·10 Согласно 1-го закона термодинамики

 

t = 27°C Так как при изотермическом процессе

  то

* Процесс растяжения шнура происходит при постоянной температуре, а значит изменения внутренней энергии не происходит. Работа А равна изменению потенциальной энергии резинового шнура:

А = ,

Отсюда: 

Ответ: 

Задача 21. Углекислый газ массой 88 г находится в сосуде емкостью 10 л. Определить внутреннее давление газа и собственный объем молекул.

Дано:

V = 10 л = 10 –2 м3

m = 88 г = 8,8·10-2 кг

М = 4,4·10-2 кг/моль

а = 0,361 Н·м/моль2

b = 4,28·10-5 м3/моль

Решение:

По уравнению Ван-дер-Ваальса выражение добавочного давления р/ имеет вид:

,

где а–постоянная Ван-дер-Ваальса, V – объем.

р’ - ?

V’ - ?

 

Постоянная Ван-дер-Ваальса b учитывает поправку на собственный объем молекул V’, и, как следует из уравнения Ван-дер-Ваальса, произведение равно учетверенному объему молекул , откуда:

.

Ответ: 0,021 л.

 Что касается термодинамических уравнений состояния для двух других термодинамических потенциалов, то есть свободной энергии F и термодинамического потенциала Гиббса G (свободной энтальпии), то они находятся легче и выглядят проще, чем для внутренней энергии и энтальпии. Из уравнения (6.5), которое дает dU = dF + TdS + SdT, и термодинамического тождества TdS = dU + PdV мы получаем dF = - PdV – SdT.


С другой стороны, дифференциал свободной энергии как функции объема и температуры


Сравнивая эти два уравнения, находим скорость изменения свободной энергии в изотермическом процессе при изменении объема

Это уравнение означает, что если мы знаем давление при некоторой температуре (которое довольно легко измерить), то мы знаем быстроту изменения свободной энергии и можем вычислить ее изменение в изотермическом процессе при изменении объема.


Совершенно аналогичным образом находится выражение для дифференциала термодинамического потенциала Гиббса


Отсюда скорость изменения термодинамического потенциала в изотермическом процессе при изменении давления просто равна объему


Поскольку объем достаточно легко измеряется, то уравнение (7.4) позволяет вычислить изменение термодинамического потенциала Гиббса в изотермическом процессе при изменении давления.

Практический интерес в термодинамике представляют не абсолютные значения термодинамических функций, а их изменения при переходе системы из одного состояния в другое. Поэтому функции находят с точностью до произвольного постоянного слагаемого (в этом смысле они похожи на потенциальную энергию в механике, которая отсчитывается от произвольного уровня, принимаемого за нулевой).

 Система связей между термодинамическими функциями.


Деление кристаллов на диэлектрики, металлы и полупроводники