Кинематика Механические передачи Молекулярная физика и термодинамика Ядерная физика

Лабораторная работа по физике. Практические занятия

Примеры решения задач

Задача 5

Канат лежит на столе так, что часть его свешивается со стола, и начинает скользить тогда, когда длина свешивающейся части составляет 25% всей его длины. Чему равен коэффициент трения каната о стол?

Решение

Разрежем мысленно канат в месте сгиба и соединим обе части невесомой нерастяжимой нитью. Когда канат только начнёт скользить, все силы уравновесятся (так как он движется ещё без ускорения), а сила трения достигает величины силы трения скольжения, Fтр = μΝ.

Условия равновесия сил:

mg = N  

Fтр = T    

mg = T m  

Отсюда: μmg= mg,

или μ =

Задача 6

Подпись: Невесомый блок укреплён на вершине            наклонной плоскости, составляющей с горизонтом угол α =30о. Тела А и В равной массы m1=m2=1кг соединены нитью. Найти: 1) ускорение, с которым движутся тела, 2) натяжение нити. Трением в блоке и трением тела В о наклонную плоскость пренебречь.

 


  Решение

 x y Запишем уравнения движения обоих тел:

    А: m = m +

  x x x В: m = m + +

В проекциях для тела А:

  – ma=T–mg (3)

Для тела В по оси х:

 – ma = –T + mg sin a (4)

 0 = N – mg cos a  (5)

Если сложить уравнения (3) и (4), то получим:

–2ma = – mg + mg sin a, или

a = g

Подставив это значение, например, в уравнение (3) (можно в (4)), получаем: T = mg – ma = mg

Подставляем числовые значения:

  a = 9,8 =  = 2,45

 T = 1 ∙ 9,8 = 7,35 H

Задача 7

Вагон массой 20 т, двигавшийся равномерно, под действием силы трения в 6 кН через некоторое время остановился. Начальная скорость вагона равна 54 км/ч. Найти: 1) работу сил трения; 2) расстояние, которое вагон пройдёт до остановки.

Решение

Работа равна приращению кинетической энергии тела:

Aтр = 0 –  = – ,

Знак «–» означает, что работа сил трения отрицательна, так как силы трения направлены против движения.

С другой стороны, работу силы трения можно рассчитать через произведение силы на путь:

Aтр  = Fтр. S,

отсюда S =  =

Подставив числовые значения:

m = 2.104 кг, Fтр = 6.103 Н, υ = 15 ,

получим:

 Aтр =  = 2,25.106 Дж = 2,25 МДж,

 S =  = 358 м.

ТЕРМОДИНАМИЧЕСКИЕ ПОТЕНЦИАЛЫ

Максимальная работа в термодинамических процессах

Поскольку энергетические соотношения играют в термодинамике очень важную роль (вся термодинамика развивалась под влиянием практических потребностей преобразования теплоты в работу), то при расчетах особый интерес представляет аналог механической потенциальной энергии. Напомним, что в механике потенциальная энергия вводится как скалярная функция, позволяющая вычислить работу консервативной силы не через вычисление интеграла от элементарной работы вдоль всего пройденного пути, а просто как разность значений этой функции в начале и конце пути (что существенно упрощает вычисления). Нахождение работы силы является одной из важнейших задач механики. Однако в термодинамике, в отличие от привычной механики консервативных систем (где отсутствуют силы, зависящие от скоростей), система может переходить из одного состояния в другое, совершая разную работу, в зависимости от способа (пути) перехода, поскольку разное количество энергии передается частично силовым (работа), а частично тепловым (теплота) путем (хотя полное изменение внутренней энергии системы будет при этом тем же самым). Поэтому в термодинамике рассматривают четыре наиболее важных для практики процесса изменения состояния термодинамических систем. Так, например, изменение состояния системы без теплообмена с окружающей средой может происходить при неизменном объеме, а может - при постоянном давлении (с изменением объема). Роль потенциальной энергии в этих процессах будут играть разные функции, в первом случае – внутренняя энергия U, а во втором – так называемая энтальпия H (теплосодержание). Если процесс происходит при хорошем тепловом контакте, обеспечивающем постоянство и равенство температуры термодинамической системы с температурой внешней среды, то изменение состояния системы может опять происходить как при постоянном объеме, так и при постоянном давлении. Здесь в первом случае роль потенциальной энергии будет играть функция, называемая свободной энергией и обозначаемая обычно F, а во втором – термодинамическим потенциалом Гиббса (свободной энтальпией), который мы будем обозначать буквой G.

 Таким образом, в термодинамике оказалось несколько аналогов потенциальной энергии в зависимости от вида процесса. Эти функции состояния термодинамической системы получили название термодинамических потенциалов. Изменения этих функций при переходе системы из одного состояния в другое позволяют вычислить максимальную работу, которую при этом система может совершить в самом благоприятном случае, когда нет потерь энергии. Еще раз напомним, что основной технической задачей термодинамики является создание максимально эффективных тепловых машин как источников механической энергии, то есть машин, преобразующих теплоту в работу.


Деление кристаллов на диэлектрики, металлы и полупроводники