Прямая доставка чая из Китая

Гуманитарные науки

Гуманитарные науки

Студенческий файлообменник

Студенческий файлообменник

Выполнение 
работ на заказ. Контрольные, курсовые и дипломные работы

Выполнение работ на заказ. Контрольные, курсовые и дипломные работы

Занимайтесь онлайн 
        с опытными репетиторами

Занимайтесь онлайн
с опытными репетиторами

Приглашаем к сотрудничеству преподователей

Приглашаем к сотрудничеству преподователей

Готовые шпаргалки, шпоры

Готовые шпаргалки, шпоры

Отчет по практике

Отчет по практике

Приглашаем авторов для работы

Авторам заработок

Решение задач по математике

Закажите реферат

Закажите реферат

Кинематика Механические передачи Молекулярная физика и термодинамика Ядерная физика

Лабораторная работа по физике. Практические занятия

Маховое колесо, имеющее момент инерции 245 кг∙м2, вращается с частотой 20 об/с. Через минуту после того, как на колесо перестал действовать вращающий момент, оно остановилось. Найти: 1) момент сил трения; 2) число оборотов, которое сделало колесо до полной остановки после прекращения действия сил.

Решение

При торможении угловое ускорение отрицательно. Найдём его модуль из кинематического соотношения для угловой скорости.

ω 0 = 2 π ν0, ω = 0,

0 = 2 π ν0 - ε t,

отсюда ε = .

Это ускорение обусловлено действием момента сил трения

Mтр = I ε = .

Полный угол поворота при равнозамедленном движении находится из соотношения:

φ = ω0 t- ,

φ =2π N, ω 0 = 2 π ν0,  ε = .

Перепишем соотношения для угла в виде:

2π N = 2 π ν0 t -  = 2 π ν0 t -  = .

Для нахождения числа оборотов получим:

N = .

Подставив числовые значения, найдём:

Mтр =  = 506 Нм,

N =  = 600 об.

Задача 15

На барабан радиусом R = 20 см, момент инерции которого равен I = 0,1 кг∙м2, намотан шнур, к которому привязан груз массой m = 0,5 кг. До начала вращения высота груза над полом равна h1 = 1 м. Найти: 1) через какое время груз опустился до пола; 2) кинетическую энергию груза в момент удара о пол; 3) натяжение нити. Трением пренебречь.

  Решение

 

На груз действует сила тяжести mg и сила натяжения шнура Т. Уравнение поступательного движения груза ma = mg – T.

Барабан вращается вокруг неподвижной оси. Его уравнение движения M = I ε,

где М – момент силы натяжения шнура, М = TR, I – момент инерции барабана, ε =  – его угловое ускорение.

TR = I .

Выражаем отсюда силу натяжения шнура:

  T = I (10)

и подставляем ее в уравнение движения груза:

mg = a(m + ) = am(1 + ).

Получаем ускорение груза:

  a = . (11)

Время движения груза можно найти из уравнения:

 h1 = ,

t =  = .

В момент удара о пол груз имел скорость:

  υ = at = .

Следовательно, его кинетическая энергия:

  Ek = =.

Подставив выражение для ускорения (11) в формулу (10), получим: T =   = .

Подставив числовые значения, определим искомые величины:

 t =  = 1,1 c,

 Ek =  = 0,82 Дж,

T =  = 4,1 Н.

 ТЕРМОДИНАМИЧЕСКИЕ УРАВНЕНИЯ СОСТОЯНИЯ

Отличие рассмотрения задач в механике и в термодинамике

Прежде всего, отметим качественное отличие описания процессов в механике и термодинамике. В механике есть уравнение движения (2-й закон Ньютона), а в термодинамике («термостатике») – термическое уравнение состояния (1.1), связывающее термодинамические параметры, знание которых для феноменологической термодинамики означает знание состояния термодинамической системы. Поскольку связь между параметрами (1.1) (существующая только в равновесных или близких к таковым состояниях) позволяет любой из параметров выразить через остальные, то описание процессов в термодинамике оказывается многовариантным. С примером этого мы уже встретились при описании адиабатного процесса в идеальном газе, где адиабатный процесс равносильно описывался тремя разными уравнениями (3.8), (3.9) и (3.10).

Возможность разных вариантов описания одного и того же термодинамического процесса породила в термодинамике проблему, которой нет в механике, а именно, проблему выбора переменных, выбора функций, наиболее удобно (с точки зрения практических приложений) описывающих процесс изменения состояния.

В 1875 году американский физик Гиббс показал, что для решения технических задач термодинамики вполне достаточно знать поведение в термодинамических процессах всего четырех функций, играющих в термодинамике роль, аналогичную роли потенциальной энергии в механике. Эти четыре функции соотносятся с четырьмя рассмотренными ранее процессами (два адиабатных и два изотермических), которых достаточно, чтобы смоделировать работу любого технически интересного термодинамического устройства. Термодинамических потенциалов четыре, так как в термодинамике четыре основные переменные – две механические для работы (давление и объем, то есть сила и перемещение) и две тепловые для теплоты (температура и энтропия), которые могут рассматриваться в качестве независимых координат термодинамических процессов. Это хорошо видно из выражений, описывающих два механизма передачи энергии термодинамической системе: PdV  и Q = TdS.

Удерживая неизменными (закрепляя) по одной механической и одной тепловой координате, мы получаем четыре разновидности основных термодинамических процессов, которых достаточно, чтобы равновесным способом перевести термодинамическую систему из любого начального (равновесного) состояния в любое конечное (равновесное), и соответствующие им четыре термодинамических потенциала. А раз так, то необходимо научиться находить эти основные термодинамические потенциалы (точнее – разность их значений) в разных состояниях, то есть надо найти дифференциальные уравнения, связывающие скорость изменения термодинамических потенциалов со значениями термодинамических параметров и их производными (то есть с величинами, которые могут быть определены опытным путем). Эти уравнения получили название- термодинамические уравнения состояния (в отличие от обычных, термических уравнений состояния, в которые входят только термодинамические параметры и которые либо очень сложны, либо вовсе нам неизвестны). Все эти уравнения выводятся из термодинамического тождества (5.3) (термодинамической формы записи закона сохранения энергии, учитывающей существование энтропии) ТdS = dU + dA.

Термодинамические уравнения состояния


Начнем с внутренней энергии, которую в термодинамическом тождестве можно представить через полный дифференциал двух переменных - температуры и объема, тогда


Дифференциал энтропии как функции двух переменных (Т,V) можно записать в виде


Сравнивая эти два выражения, находим, что

Поскольку вторые, перекрестные производные от функции двух переменных должны быть равны независимо от порядка дифференцирования, то есть


и, следовательно,


откуда

и мы имеем термодинамическое уравнение состояния для внутренней энергии (как функции объема при постоянной температуре).

 Все величины, стоящие в правой части уравнения (7.1), легко поддаются измерению на опыте, что позволяет найти зависимость внутренней энергии от объема при разных температурах.


Деление кристаллов на диэлектрики, металлы и полупроводники