Прямая доставка чая из Китая

Гуманитарные науки

Гуманитарные науки

Студенческий файлообменник

Студенческий файлообменник

Выполнение 
работ на заказ. Контрольные, курсовые и дипломные работы

Выполнение работ на заказ. Контрольные, курсовые и дипломные работы

Занимайтесь онлайн 
        с опытными репетиторами

Занимайтесь онлайн
с опытными репетиторами

Приглашаем к сотрудничеству преподователей

Приглашаем к сотрудничеству преподователей

Готовые шпаргалки, шпоры

Готовые шпаргалки, шпоры

Отчет по практике

Отчет по практике

Приглашаем авторов для работы

Авторам заработок

Решение задач по математике

Закажите реферат

Закажите реферат

Кинематика Механические передачи Молекулярная физика и термодинамика Ядерная физика

Лабораторная работа по физике. Практические занятия

МЕХАНИЧЕСКИЕ КОЛЕБАНИЯ И ВОЛНЫ

Основные формулы

Гармонические колебания происходят по закону:

x = A cos(ωt + φ0),

где  x – смещение частицы от положения равновесия, А – амплитуда колебаний, ω – круговая частота, φ0 – начальная фаза, t – время.

Период колебаний  T = .

Скорость колеблющейся частицы:

υ =  = – A ω sin (ωt + φ0),

ускорение  a =  = – Aω2 cos (ωt + φ0).

Кинетическая энергия частицы, совершающей колебательное движение: Ek =  =  sin2(ωt + φ0).

Потенциальная энергия:

En =  cos2(ωt + φ0).

Периоды колебаний маятников

– пружинного T = ,

где m – масса груза, k – коэффициент жесткости пружины,

– математического T = ,

где l – длина подвеса, g – ускорение свободного падения,

– физического T = ,

где I – момент инерции маятника относительно оси, проходящей через точку подвеса, m – масса маятника, l – расстояние от точки подвеса до центра масс.

Приведенная длина физического маятника находится из условия: lnp = ,

обозначения те же, что для физического маятника.

При сложении двух гармонических колебаний одной частоты и одного направления получается гармоническое колебание той же частоты с амплитудой:

A = A12 + A22 + 2A1 A2 cos(φ2 – φ1)

и начальной фазой: φ = arctg .

где А1, A2 – амплитуды, φ1, φ2 – начальные фазы складываемых колебаний.

Траектория результирующего движения при сложении взаимноперпендикулярных колебаний одной частоты:

 +  –  cos (φ2 – φ1) = sin2 (φ2 – φ1).

Затухающие колебания происходят по закону:

x = A0 e- βt cos(ωt + φ0),

где β – коэффициент затухания, смысл остальных параметров тот же, что для гармонических колебаний, А0 – начальная амплитуда. В момент времени t амплитуда колебаний:

A = A0 e - βt.

Логарифмическим декрементом затухания называют:

λ = ln  = βT,

где Т – период колебания: T = .

Добротностью колебательной системы называют:

D = .

Уравнение плоской бегущей волны имеет вид:

y = y0 cos ω(t ± ),

где у – смещение колеблющейся величины от положения равновесия, у0 – амплитуда, ω – круговая частота, t – время, х – координата,  вдоль которой распространяется волна, υ – скорость распространения волны.

Знак «+» соответствует волне, распространяющейся против оси X, знак «–» соответствует волне, распространяющейся по оси Х.

Длиной волны называют ее пространственный период:

λ = υT,

где υ–скорость распространения волны, T–период распространяющихся колебаний.

Уравнение волны можно записать:

y = y0 cos 2π ( + ).

Стоячая волна описывается уравнением:

y = (2y0 cos ) cos ω t.

В скобки заключена амплитуда стоячей волны. Точки с максимальной амплитудой называются пучностями,

xп = n,

точки с нулевой амплитудой – узлами,

xу = (n + ).

Примеры решения задач

Задача 20

Амплитуда гармонических колебаний равна 50 мм, период 4 с и начальная фаза . а) Записать уравнение этого колебания; б) найти смещения колеблющейся точки от положения равновесия при t=0 и при t = 1,5 с; в) начертить график этого движения.

Решение

Уравнение колебания записывается в виде x = a cos(wt + j0).

По условию известен период колебаний. Через него можно выразить круговую частоту w = . Остальные параметры известны:

а) x = 0,05 cos(t + ).

б) Смещение x при t = 0.

x1 = 0,05 cos= 0,05  = 0,0355 м.

При t = 1,5 c

x2 = 0,05 cos(1,5 + )= 0,05 cos p = – 0,05 м.

в) график функции x=0,05cos (t + ) выглядит следующим образом:

 

Определим положение нескольких точек. Известны х1(0) и х2(1,5), а также период колебаний. Значит, через Dt = 4 c значение х повторяется, а через Dt = 2 c меняет знак. Между максимумом и минимумом посередине – 0 .

Системы с механической связью

Если связь термодинамической системы с окружающими телами силовая, то-есть чисто механическая, а не тепловая (система адиабатически изолирована, и теплообмена с окружением нет), тогда равновесию по-прежнему соответствует максимум энтропии (работа силы, как известно, не влияет на энтропию), но условие минимума внутренней энергии уже не выполняется. Легко понять, что к минимуму стремится не сама внутренняя энергия, а ее сумма с потенциальной энергией, характеризующей силовую связь с внешними телами. В общем случае потенциал внешних сил, конечно, отличен от РV, но чаще всего, когда нет электрических и магнитных влияний, такая связь осуществляется посредством внешнего давления, которое, как правило, постоянно. В этом случае общее выражение для вариации (9.1) (с учетом вариации для энтропии S = 0 ) позволяет записать условие равновесия сначала в виде U + PV > 0, а с учетом постоянства давления как U + PV) > 0. Поскольку функция состояния, именуемая энтальпией Н = U + PV, то условие термодинамического равновесия в системах с механической связью при постоянном давлении принимает вид

 ( Н ) S,Р > 0. (9.4)

 Это означает, что в отсутствие теплообмена (энтропия сохраняется) и при постоянном давлении равновесию в термодинамических системах соответствует минимум энтальпии, то есть для систем с механической связью, находящихся под постоянным давлением, энтальпия играет такую же роль, какую играет внутренняя энергия для систем с неизменным объемом при протекании в них обратимых процессов.

 Системы с тепловой связью

 Рассмотрим, что нового вносит в условия равновесия термодинамических систем хороший теплообмен с окружающими телами, когда температура термодинамической системы все время успевает сравняться с температурой окружающей среды. Наиболее важным для практики является, конечно, случай изотермических процессов, идущих в условиях, близких к равновесным.

 Если, наряду с температурой, неизменным оказывается также объем системы (V=0), то общее неравенство для вариаций (9.1) с учетом постоянства температуры дает выражение U- ТS) > 0. Поскольку функция состояния термодинамической системы, именуемая свободной энергией,  F = U- ТS , то для систем с хорошим теплообменом (Т = const.) и при постоянстве объема условие термодинамического равновесия принимает вид

 (F)Т,V > 0. (9.5)

 Аналогичным образом из общего неравенства для вариаций (9.1) можно получить условие изотермического равновесия при постоянном давлении, что выразится в требовании минимальности термодинамического потенциала Гиббса G = U + PV – TS, то есть в виде

 (G) Т,Р > 0. (9.6)

 Напомним еще раз, что в условиях равновесных (обратимых) процессов все эти функции (внутренняя энергия, энтальпия, свободная энергия и потенциал Гиббса) играют роль, аналогичную роли потенциальной энергии в механике. Подобно потенциальной энергии в механике все эти функции минимальны, когда система находится в состоянии теплового равновесия, и следовательно, любое выведение системы из этого состояния связано с затратой работы внешних сил.


Деление кристаллов на диэлектрики, металлы и полупроводники