Прямая доставка чая из Китая

Гуманитарные науки

Гуманитарные науки

Студенческий файлообменник

Студенческий файлообменник

Выполнение 
работ на заказ. Контрольные, курсовые и дипломные работы

Выполнение работ на заказ. Контрольные, курсовые и дипломные работы

Занимайтесь онлайн 
        с опытными репетиторами

Занимайтесь онлайн
с опытными репетиторами

Приглашаем к сотрудничеству преподователей

Приглашаем к сотрудничеству преподователей

Готовые шпаргалки, шпоры

Готовые шпаргалки, шпоры

Отчет по практике

Отчет по практике

Приглашаем авторов для работы

Авторам заработок

Решение задач по математике

Закажите реферат

Закажите реферат

Кинематика Механические передачи Молекулярная физика и термодинамика Ядерная физика

Лабораторная работа по физике. Практические занятия

Задача16. Кислород массой 1 кг совершает цикл Карно. При изотермическом расширении газа его объём увеличивается в 2 раза, а при последующем адиабатическом расширении совершается работа 3000 Дж. Определить работу, совершенную за цикл.

Дано:

V2 = 2V1 

A2-3 = 3000 Дж

i = 5

Решение:

Идеальный цикл Карно состоит из двух изотерм и двух адиабат (рис. 3).

А - ?

 На рисунке 3 участок 1-2 соответствует изотермическому расширению газа (Т1 = Т2), участок 2-3 – адиабатическому расширению газа, участок 3-4 – изотермическому сжатию (Т3 = Т4) и участок 4-1 – адиабатическому сжатию.

При изотермическом расширении внутренняя энергия идеального газа остается постоянной, следовательно, все подводимое тепло Q1 идет на работу по расширению газа на участке 1-2, т.е.


 (1)

При изотермическом сжатии на участке 3-4 Q2 тепло отдается холодильнику (Q2), и это количество теплоты определяется работой, затраченной на сжатие газа:

  (2)

Состояния 2 и 3 лежат на одной адиабате, поэтому можно записать:

  (3)

Для состояний 4 и 1, которые отвечают одной адиабате, имеем:

  (4)

Поделив выражение (3) на (4), получим:

  , (5)

так как Т1 = Т2 и Т3 = Т4.

Работа при адиабатическом расширении на участке 2-3 равна:

  (6)

Работа при адиабатическом сжатии на участке 4-1 равна:

.

Так как Т1 = Т2, а Т3 = Т4, то А2 - 3 = -А4 - 1, т.е. полная работа по адиабатическому сжатию и расширению равна нулю.

Следовательно, работа цикла: А = А1-2 – А3-4.

Из уравнений (1), (2) и (5) получим:  (7)

Из уравнения (6) выразим разность температур Т2 – Т3, равную Т1 – Т3, и подставим в уравнение (7): . Произведем вычисления: .

Ответ: 831,6 Дж. 

Задача 17. В результате изотермического расширения объем 8 г кислорода увеличился в 2 раза. Определить изменение энтропии газа.

Дано:

M = 32 кг/кмоль

V2 = 2V1

Решение:

Изменение энтропии системы определяется по формуле:

(1)

где dQ – количества тепла,

∆S - ?

сообщенное газу, Т – абсолютная температура, S1 и S2 – значения энтропии в начальном и конечном состояниях системы.

При изотермическом расширении все подводимое количество теплоты идет на работу по расширению, т.е. dQ = dA = pdV.

Из уравнения Менделеева – Клапейрона: поэтому:

 (2)

 Подставляя выражение (2) в (1), получим:

Произведем вычисления:

 

Ответ: 1,44 Дж/град.

Задача 18. Горячая вода некоторой массы отдает теплоту холодной воде такой же массы, и температуры их становятся одинаковыми. Показать, что энтропия при этом увеличивается.

Решение:

Пусть температура горячей воды T1, холодной – T2, а температура смеси Θ. Определим температуру смеси, исходя из уравнения теплового баланса:

, или

откуда:  . (1)

Изменение энтропии, происходящее при охлаждении горячей воды:

.

Изменение энтропии, происходящее при нагревании холодной воды:

.

Изменение энтропии системы равно

,

или с учетом соотношения (1) имеем: .

Так как , то  и .

Поэтому , т.е. энтропия возросла.

Ответ: энтропия увеличивается.


Деление кристаллов на диэлектрики, металлы и полупроводники