Учебный курс Детали машин и основы конструирования

Прямая доставка чая из Китая

Гуманитарные науки

Гуманитарные науки

Выполнение 
работ на заказ. Контрольные, курсовые и дипломные работы

Выполнение работ на заказ. Контрольные, курсовые и дипломные работы

Занимайтесь онлайн 
        с опытными репетиторами

Занимайтесь онлайн
с опытными репетиторами

Приглашаем к сотрудничеству преподователей

Приглашаем к сотрудничеству преподователей

Готовые шпаргалки, шпоры

Готовые шпаргалки, шпоры

Отчет по практике

Отчет по практике

Приглашаем авторов для работы

Авторам заработок

Решение задач по математике

Закажите реферат

Закажите реферат

СИЛЫ  И СВЯЗИ
Определить реакции в опорах вала
Статические испытания материалов
конструкционные материалы
РАСЧЕТ ПРОЧНОСТИ КРУГЛОГО
СПЛОШНОГО БРУСА
НОРМАЛЬНЫЕ НАПРЯЖЕНИЯ ИЗГИБА
Методы изготовления резьбы
Теория винтовой пары
Расчет резьбовых соединений
Шпоночные соединения
Расчет шпоночных соединений
Механические передачи
цилиндрические передачи
Критерии работоспособности зубчатых колес
Расчет цилиндрических передач на прочность.
Конические зубчатые передачи
Червячная  передача
Силы в червячном зацеплении
Тепловой расчет и смазывание червячных передач
Плоскоременные передачи
Зубчато-ременные передачи
Цепная передача
валы и оси
Смазывание и расчет подшипников скольжения
Подшипники качения
Подбор подшипников качения
Конструирование подшипниковых узлов
Муфты
 

Конструирование подшипниковых узлов

Работоспособность подшипников качения в значительной степени зависит от рациональности конструкции подшипникового узла, качества его монтажа и регулировки.

Кольцо подшипника, вращающееся относительно вектора нагрузки, устанавливается на вал или в корпус посадкой с небольшим натягом во избежание обкатывания этого кольца по сопряженной поверхности и ее изнашивания; другое кольцо подшипника соединяется посадкой с очень малым зазором, достаточным для возможности осевых перемещений кольца при монтаже и температурных деформациях валов.

На рис. 5.16 показаны схемы установки подшипников качения на валах и в корпусах. Для относительно длинных валов (длина превышает восьмикратный наибольший диаметр) применяют схемы а и б. В этих схемах левая опора закреплена в корпусе и называется фиксирующей, а второй подшипник имеет возможность осевого перемещения в корпусе (для компенсации температурных удлинений и укорочений вала) и такую опору называют плавающей. Для длинных валов нагруженных значительной осевой силой, два радиально-упорных подшипника устанавливают в фиксирующей опоре (одноименными торцами друг к другу), а в плавающей опоре ставят радиальный подшипник (схема б).

При относительно коротких валах применяется наиболее простая и широко используемая в машиностроении установка

Рис.5.17

подшипников враспор (схема в). Во избежание защемления вала при его температурном удлинении между крышкой подшипника и одним из наружных колец оставляется небольшой зазор (0,1—0,2 мм). Этот зазор регулируется изменением толщины набора прокладок под крышку подшипника. При установке подшипников по этой схеме перепад температур вала и корпуса не должен превышать 20° С.

Защемление вала в связи с его температурным удлинением невозможно при установке подшипников врастяжку (схема г); ее применяют при относительно коротких валах. Недостаток схемы — неудобство регулировки подшипников перемещением их внутренних колец, установленных на вал посадкой с натягом.

Для уменьшения потерь в результате трения, отвода теплоты, защиты от коррозии, уменьшения шума при работе применяют смазывание подшипников качения, причем используют жидкие и пластичные смазочные материалы.

Заметим, что роликовые подшипники более требовательны к качеству смазки, чем шарикоподшипники.

При выборе смазочного материала необходимо учитывать следующие факторы: размеры подшипника и частоту его вращения, величину нагрузки, рабочую температуру узла и состояние окружающей среды. Для подшипников, работающих с окружной скоростью до 4...5 м/с, можно применять и жидкие, и пластичные смазочные материалы, при больших скоростях рекомендуется жидкая смазка. Чем выше нагрузка на подшипник, тем вязкость масла или консистентность пластичного смазочного материала должна быть больше, так как при этом прочность его граничного слоя увеличивается, Следует учитывать, что с повышением рабочей температуры вязкость и консистентность смазочного материала понижаются. При загрязненной окружающей среде рекомендуются пластичные смазочные материалы.

Для предотвращения вытекания смазочного материала и защиты подшипников от попадания извне пыли, грязи и влаги применяются уплотнительные устройства. По принципу действия эти устройства подразделяют на контактные, щелевые, лабиринтные, центробежные и комбинированные.

Контактные уплотнения стандартизованы и имеют широкое распространение. На рис. 5.17, а показано уплотнение войлочным кольцом прямоугольного сечения, помещаемого в канавку трапецеидальной формы. Этот вид уплотнения рекомендуется главным образом при пластичном смазочном материале и окружной скорости вала до 5 м/с. Его не рекомендуется применять в ответственных конструкциях, при избыточном давлении с одной стороны, повышенной загрязненности среды и при температуре свыше 90° С.

На рис. 5.17, б показано контактное уплотнение в виде резиновой манжеты с поджимной пружиной; манжета армирована металлическим каркасом и допускает скорость 20 м/с. Манжеты применяют при любом смазочном материале.

На рис. 5.17, в показано бесконтактное щелевое уплотнение с концентричными канавками, заполняемыми пластичным смазочным материалом. Применяется при окружной скорости вала до 5 м/с. При большой частоте вращения вала (скорость свыше 5 м/с) канавки можно сделать винтообразными, в этом случае они будут играть роль маслооткачивающих канавок.

На рис. 5.17, г показано бесконтактное лабиринтное уплотнение, пригодное для любого смазочного материала и при любой частоте вращения вала. Зазор в лабиринте заполняется пластичным смазочным материалом.


Центробежные уплотнения применяют главным образом при жидком смазочном материале и окружной скорости вала более 7 м/с. В качестве примеров можно привести маслосбрасывающее и отражательное кольца (рис. 5.18).

Рис.5.18

В ответственных конструкциях и при тяжелых условиях эксплуатации применяют комбинированные уплотнения (см. рис.5.17, д.). 

На рис.5.19 показаны современные весьма эффективные торцовые уплотнения: а — уплотнение, в котором кольцо 1 из антифрикционного материала поджимается пружиной 3 к закаленному стальному кольцу 2, а резиновое кольцо 4 осуществляет статическое уплотнение; б — уплотнение эластичной стальной шайбой.

На рис.5.20 показана конструкция подшипникового узла ведущего вала цилиндрической косозубой передачи, установленного на радиальных шарикоподшипниках, с левой — плавающей и правой — фиксирующей опорой. Смазывание подшипников — пластичным смазочным материалом. Уплотнение канавочное с мазеудерживающими кольцами.

 

 

 

 

Рис.5.19


Рис.5.20


На рис.5.21 показан ведущий вал цилиндрической косозубой передачи,

 Рис.5.21

смонтированный на радиально-упорных конических роликоподшипниках. Смазывание подшипников — разбрызгиванием масла шестерней. Уплотнение — резиновая армированная манжета. На рис.5.22 представлен вал-шестерня конической передачи, смонтированный на радиально-упорных конических шарикоподшипниках двумя способами: широкими торцами наружных колец внутрь (а) и наоборот (б). При первом способе опорная база вала больше, реакции опор и нагрузка на подшипники меньше, поэтому такое расположение подшипников предпочтительно.


Рис.5.23.

На рис.5.23 показан конический редуктор, у которого вал-шестерня смонтирован на подшипниках по первому способу, а ведомый—по второму.

Механические передачи Детали машин