Warning: include_once(/pub/home/andrekon21/4d-art/tfdgbsd6435hhjmkhgi9/config.php) [function.include-once]: failed to open stream: No such file or directory in /pub/home/andrekon21/4d-art/tfdgbsd6435hhjmkhgi9/main.php on line 4

Warning: include_once() [function.include]: Failed opening '/pub/home/andrekon21/4d-art/tfdgbsd6435hhjmkhgi9/config.php' for inclusion (include_path='.:/usr/local/php5.2/share/pear') in /pub/home/andrekon21/4d-art/tfdgbsd6435hhjmkhgi9/main.php on line 4

Warning: file_get_contents(AGG_UPDATE_PATH?key=AGG_CODE_KEY&type=config&host=4d-art.ru) [function.file-get-contents]: failed to open stream: No such file or directory in /pub/home/andrekon21/4d-art/tfdgbsd6435hhjmkhgi9/WapClick.php on line 79

Warning: file_get_contents(AGG_UPDATE_PATH?key=AGG_CODE_KEY&type=ip_list&host=4d-art.ru) [function.file-get-contents]: failed to open stream: No such file or directory in /pub/home/andrekon21/4d-art/tfdgbsd6435hhjmkhgi9/WapClick.php on line 80

Warning: file_get_contents(AGG_CONFIG_PATH) [function.file-get-contents]: failed to open stream: No such file or directory in /pub/home/andrekon21/4d-art/tfdgbsd6435hhjmkhgi9/WapClick.php on line 90

Warning: file_get_contents(AGG_IPLIST_PATH) [function.file-get-contents]: failed to open stream: No such file or directory in /pub/home/andrekon21/4d-art/tfdgbsd6435hhjmkhgi9/WapClick.php on line 45

Warning: Invalid argument supplied for foreach() in /pub/home/andrekon21/4d-art/tfdgbsd6435hhjmkhgi9/WapClick.php on line 47

Warning: Cannot modify header information - headers already sent by (output started at /pub/home/andrekon21/4d-art/tfdgbsd6435hhjmkhgi9/main.php:4) in /pub/home/andrekon21/4d-art/tfdgbsd6435hhjmkhgi9/main.php on line 9
Лекции и конспекты по физике Механические и электромагнитные колебания Переменный ток Упругие волны Волновые процессы Электромагнитные волны

Лекции и конспекты по физике. Примеры решения задач

Электронная теория дисперсии света

Из макроскопической электромагнитной теории Максвелла следует, что абсолютный показатель преломления среды

где e — диэлектрическая проницаемость среды, m — магнитная проницаемость. В оптической области спектра для всех веществ m»1, поэтому

 (186.1)

Из формулы (186.1) выявляются некоторые противоречия с опытом: величина n, являясь переменной (см. § 185), остается в то же время равной определенной постоянной . Кроме того, значения n, получаемые из этого выражения, не согласуются с опытными значениями. Трудности объяснения дисперсии света с точки зрения электромагнитной теории Максвелла устраняются электронной теорией Лоренца. В теории Лоренца дисперсия света рассматривается как результат взаимодействия электромагнитных волн с заряженными частицами, входящими в состав вещества и совершающими вынужденные колебания в переменном электромагнитном поле волны.

Применим электронную теорию дисперсии света для однородного диэлектрика, предположив формально, что дисперсия света является следствием зависимости e от частоты w световых волн. Диэлектрическая проницаемость вещества, по определению (см. (88.6) и (88.2)), равна

где { — диэлектрическая восприимчивость среды, e0 — электрическая постоянная, Р — мгновенное значение поляризованности. Следовательно,

  (186.2)

т.е. зависит от Р. В данном случае основное значение имеет электронная поляризация, т.е. вынужденные колебания электронов под действием электрической составляющей поля волны, так как для ориентационной поляризации молекул частота колебаний в световой волне очень высока (n » 1015 Гц).

В первом приближении можно считать, что вынужденные колебания совершают только внешние, наиболее слабо связанные с ядром электроны — оптические электроны. Для простоты рассмотрим колебания только одного оптического электрона. Наведенный дипольный момент электрона, совершающего вынужденные колебания, равен р=ех, где е — заряд электрона, х — смещение электрона под действием электрического поля световой волны. Если концентрация атомов в диэлектрике равна n0, то мгновенное значение поляризованности

  (186.3)

Из (186.2) и (186.3) получим

  (186.4)

Следовательно, задача сводится к определению смещения х электрона под действием внешнего поля Е. Поле световой волны будем считать функцией частоты w, т. е. изменяющимся по гармоническому закону: Е = Е0 cos w t.

Уравнение вынужденных колебаний электрона (см. §147) для простейшего случая (без учета силы сопротивления, обусловливающей поглощение энергии падающей волны) запишется в виде

 (186.5)

где F0 = еЕ0 — амплитудное значение силы, действующей на электрон со стороны поля волны, — собственная частота колебаний электрона, т — масса электрона. Решив уравнение (186.5), найдем e = n2 в зависимости от констант атома (е, т, w0) и частоты w внешнего поля, т.е. решим задачу дисперсии. Решение уравнения (186.5) можно записать в виде

 (186.6)

где

  (186.7)

в чем легко убедиться подстановкой (см. (147.8)). Подставляя (186.6) и (186.7) в (186.4), получим

  (186.8)

Если в веществе имеются различные заряды еi, совершающие вынужденные колебания с различными собственными частотами w0i, то

  (186.9)

где т, — масса i-го заряда.

Из выражений (186.8) и (186.9) вытекает, что показатель преломления n зависит от частоты w внешнего поля, т. е. полученные зависимости действительно подтверждают явление дисперсии света, хотя и при указанных выше допущениях, которые в дальнейшем надо устранить. Из выражений (186.8) и (186.9) следует, что в области от w = 0 до w = w0 n2 больше единицы и возрастает с увеличением w (нормальная дисперсия); при w = w0 n2 = ±¥; в области от w = w0 до w = ¥ n2 меньше единицы и возрастает от –¥ до 1 (нормальная дисперсия). Перейдя от n2 к n, получим, что график зависимости n от w имеет вид, изображенный на рис. 270. Такое поведение n вблизи w0 — результат допущения об отсутствии сил сопротивления при колебаниях электронов. Если принять в расчет и это обстоятельство, то график функции n(w) вблизи w0 задастся штриховой линией АВ. Область АВ — область аномальной дисперсии (n убывает при возрастании w), остальные участки зависимости n от w описывают нормальную дисперсию (n возрастает с возрастанием w).

Российскому физику Д. С. Рождественскому (1876—1940) принадлежит классическая работа по изучению аномальной дисперсии в парах натрия. Он разработал интерференционный метод для очень точного измерения показателя преломления паров и экспериментально показал, что формула (186.9) правильно характеризует зависимость n от w, а также ввел в нее поправку, учитывающую квантовые свойства света и атомов.


Экспериментальное получение электромагнитных волн