Декартова система координат Полярная и сферическаясистемы координат Преобразование графиков функций Обратные тригонометрические функции Решение систем уравнений и неравенств

Математика школьный курс лекций

Преобразование графиков функций

Параллельный перенос

Пусть имеется график функции y  =  f  ( x ). Зададимся целью построить график функции y  =  f 1  ( x ), где f 1  ( x ) =  f  ( x ) +  B . Ясно, что области определения этих функций совпадают. Пусть A  ( x 0 ;  y 0 ) – точка на графике функции y  =  f  ( x ). Соответствующая ей точка A ′ ( x 0 ;  y 1 ) с той же абсциссой имеет координаты A ′ ( x 0 ;  y 0  +  B ). Точка A ′ получается из точки A сдвигом на B вертикально вверх, если B  > 0, и на | B | вниз, если B  < 0. Обобщая это рассуждение на все точки, приходим к выводу, что график функции y  =  f  ( x ) +  B получается из графика функции y  =  f  ( x ) параллельным переносом вдоль оси OY на B вверх, если B  > 0, и на | B | вниз, если B  < 0.

Алгебраически для каждой точки графика это можно записать системой где x и y – координаты какой-либо точки старого графика, x ′ и y ′ – соответствующей ей точки нового.

Аналогичным образом можно построить график функции y  =  f  ( x  –  b ). Точка A ′ ( x ′;  y ′) нового графика имеет такую же ординату, как и точка A  ( x ;  y ), если x ′ =  x  +  b . Таким образом, чтобы построить точку A ′, нужно сместить точку A вправо, если b  > 0, и влево, если b  < 0.

Модель 1.13. Параллельный перенос графиков.

График функции y  =  f  ( x  –  b ) получается из графика функции y  =  f  ( x ) параллельным переносом вдоль оси OX на b вправо, если b  > 0, и на | b | влево, если b  < 0.

Алгебраически это записывается системой:

Область определения функции, соответствующей новому графику, также смещается на a по отношению к области определения функции, задающей старый график.

В общем случае график функции y  =  f  ( x  –  b ) +  B получается из графика функции y  =  f  ( x ) параллельным переносом, при котором начало координат O  (0, 0) переходит в точку O ′ ( b ,  B ). Обычно находят точку O ′ и проводят через нее вспомогательные координатные оси, относительно которых строят график функции y  =  f  ( x ).

Сжатие (растяжение) графика к оси OX задается с помощью системы уравнений

Отражение относительно осей и точек Пусть имеется график функции y  =  f  ( x ). Чтобы получить график функции, симметричный данному относительно оси OX , нужно умножить значение функции в каждой точке области определения на –1. Алгебраически это задается системой:

Построение графика суммы (произведения) двух функций производится сложением (умножением) ординат точек графиков с одинаковыми абсциссами. Приведем для примера графики функций y  =  x  + sin  x и y  =  x  sin  x , являющихся соответственно суммой и произведением графиков y  =  x и y  = sin  x .

Линейная функция

Прямая пропорциональность Рассмотрим следующую задачу. Мотоцикл движется со скоростью 50 км/ч. Построить график зависимости расстояния, пройденного автомобилем, от времени за первые 6 часов движения.

Функция y  =  kx  +  b называется линейной функцией . Ее график получается путем параллельного переноса графика функции y  =  kx на b вверх, если b  > 0, и на | b | вниз, если b  < 0. Кроме того, если k  ≠ 0, то

Значит, график функции y  =  kx  +  b получится из графика y  =  kx сдвигом на Уравнение прямой

Квадратный трехчлен

Квадратичной называется функция вида y  =  ax 2  +  bx  +  c , где a  ≠ 0, b , c – любые действительные числа. Уравнение ax 2  +  bx  +  c  = 0, где a  ≠ 0, называется квадратным уравнением .

График функции при a  ≠ 0 называется параболой . Рассмотрим сначала функцию Областью определения этой функции являются все Решив уравнение получим x  = 0. Итак, единственный нуль этой функции x  = 0. Функция является четной (для любых ось OY является ее осью симметрии.

Тригонометрическими называются функции вида y  = sin  x , y  = cos  x , y  = tg  x , y  = ctg  x и их комбинации.

Синус и косинус Положение точек на координатной окружности можно задавать не только длиной дуги, но и декартовыми координатами. Построим декартову систему координат с центром в точке O , осью абсцисс, проходящей через начало отсчета A  (0), и осью ординат, проходящей через точку За единицу отсчета возьмем радиус этой окружности. Декартовы координаты точки M  ( x ) единичной окружности называются косинусом и синусом числа x : M  ( x ) =  M  (cos  x ; sin  x ). Основное тригонометрическое тождество (следствие теоремы Пифагора): sin 2   x  + cos 2   x  = 1

Тангенсом угла x называется отношение синуса этого угла к косинусу этого же угла. Котангенсом угла x называется отношение косинуса этого угла к синусу этого же угла:


Математика Примеры решения задач