Теорема синусов Изображение многоугольников и многогранников Поверхности второго порядка Исследовать систему уравнений Векторная алгебра и аналитическая геометрия


Математика школьный курс лекций

Изображение многоугольников и многогранников

Допустим, что в пространстве задана произвольная плоскость α и пересекающая ее прямая a . Выберем в пространстве произвольную точку M и проведем через нее прямую b , параллельную a .

Определение 4.3. 

Точка пересечения M 1 прямой b с плоскостью a называется параллельной проекцией точки M на эту плоскость. Плоскость α называется плоскостью проектирования, а прямая a – направлением проектирования.

Рисунок 4.2.1.

Определение 4.4. 

Пусть в пространстве задана некоторая фигура K . Отображение, ставящее в соответствие каждой точке M фигуры K ее параллельную проекцию – точку M 1 на плоскость α в направлении a , называется параллельным проектированием (на плоскость α в направлении a ). Множество точек M 1 называется параллельной проекцией фигуры K на плоскость α в направлении a .

Параллельное проектирование применяется для изображения пространственных фигур на плоскости и обладает следующими свойствами (здесь мы предполагаем, что направление проектирования не параллельно рассматриваемым отрезкам и прямым; в противном случае проекцией будет являться точка).

    Проекцией прямой является прямая, проекция отрезка есть отрезок. Две параллельные прямые проектируются либо в две параллельные прямые, либо в одну и ту же прямую. Проекции параллельных отрезков лежат либо на параллельных прямых, либо на одной прямой. Длины проекций параллельных отрезков, а также длины проекций отрезков, лежащих на одной прямой, пропорциональны длинам самих этих отрезков.

Изображением данного треугольника может служить любой треугольник.

Для изображения плоского многоугольника выделяют в нем вершины A 1,  A 2,  A 3. Затем строят изображение треугольника A 1 A 2 A 3 в виде произвольного треугольника. Изображение остальных вершин многоугольника строится однозначно с использованием свойств параллельного проектирования.

Из приведенного утверждения следует, что изображением данного треугольника может служить треугольник, подобный любому треугольнику. В частности, любой треугольник можно спроектировать в правильный треугольник, то есть правильный треугольник может служить проекцией любого треугольника.

При изображении многогранников полезно следующее утверждение.

Теорема 4.1. Теорема Польке – Шварца. Изображением данного тетраэдра может служить любой четырехугольник с проведенными в нем диагоналями (не обязательно выпуклый).

Для изображения многогранника выделяют в нем четыре вершины A 1,  A 2,  A 3,  A 4. Затем строят изображение тетраэдра A 1 A 2 A 3 A 4 в виде произвольного четырехугольника с проведенными в нем диагоналями. Изображение остальных вершин многогранника строится однозначно с использованием свойств параллельного проектирования.

Построения на изображениях

Трехгранный угол – это часть пространства, ограниченная тремя плоскими углами с общей вершиной и попарно общими сторонами, не лежащими в одной плоскости. Общая вершина О этих углов называется вершиной трехгранного угла. Стороны углов называются ребрами , плоские углы при вершине трехгранного угла называются его гранями . Грани трехгранного угла образуют двугранные углы

Параллелепипед

Многогранник, у которого одна грань, называемая основанием , – многоугольник, а другие грани – треугольники с общей вершиной, называется пирамидой .

Прямым круговым цилиндром называется тело, образованное вращением прямоугольника вокруг своей стороны.

Прямым круговым конусом называется тело, образованное при вращении прямоугольного треугольника вокруг катета

Конические сечения – плоские кривые, которые получаются пересечением прямого кругового конуса плоскостью.

Эллипс. Если концы нити заданной длины закреплены в точках F 1  и  F 2, то кривая, описываемая острием карандаша, скользящим по туго натянутой нити, имеет форму эллипса. Точки F 1 и F 2 называются фокусами эллипса, а отрезки V 1 V 2 и v 1 v 2 между точками пересечения эллипса с осями координат – большой и малой осями . Если точки F 1 и F 2 совпадают, то эллипс превращается в окружность.

Прямая, касающаяся сферы – это прямая, которая имеет единственную общую точку со сферой. Аналогично можно ввести понятие касательной прямой к поверхности конуса (цилиндра) , однако при этом рассматриваются прямые, не проходящие через точки на основании конуса (цилиндра) и через вершину конуса.

Выпуклый многогранник называется вписанным , если все его вершины лежат на некоторой сфере. Эта сфера называется описанной для данного многогранника Выпуклый многогранник называется описанным , если все его грани касаются некоторой сферы. Эта сфера называется вписанной для данного многогранника.

Теорема о вписанной сфере треугольной пирамиды

Если сфера вписана в многогранник, то объем этого многогранника равен где S – площадь полной поверхности многогранника, r – радиус вписанной сферы.


Математика школьный курс лекций